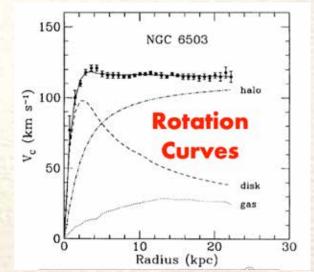
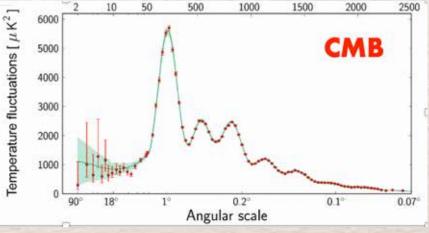


Outline


- Introduction
- Search for self-interacting dark matter (Darkonium)
- Search for Axion-like Particles (ALP)
- Search for Leptophilic dark matter PRL 125, 18,181801 (2020)
- Conclusion

Introduction

- What is dark matter?
 - New particle(s)?
 - A gravitational effect?
 - Black holes?
 - A combination of all?
- So far, we see only gravitational effects of dark matter



No new particles have been observed

Searches are ongoing at *B*-factory, LHC and astroparticle physics experiments

At B-factories explore new domains like self-interacting dark matter, leptophilic dark scalars, dark photons and axion-like particle, which sample lower energies

Link between SM and Dark Matter

PLB 662, 53 (2008)

The SM may be connected to the dark sector through so-called portals, these links are the lowest-dimensional operators that may provide coupling of the dark sector to the SM (higher-dimensional operators are mass suppressed)

•	Vector $\varepsilon F_{\gamma}^{\mu\nu} F'_{\mu\nu}$ (dim. 4)	$A^{\prime} \gamma$
•	Scalar $H^2(\mu\phi + \lambda\phi^2)$ (dim. 4)	ф Н
•	Neutrino κΗℓΝ (dim. 4)	N V
•	Axion-like $f_a^{-1}F^{\mu\nu}F_{\mu\nu}a$ (dim. 5)	a nn r nn r

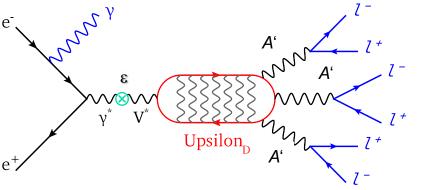
new U(1) symmetry \rightarrow dark photon, coupling to SM γ/Z via kinetic mixing ε

new dark scalar, mixing with Higgs

new heavy neutral lepton, mixing with left-handed SM doublet and Higgs

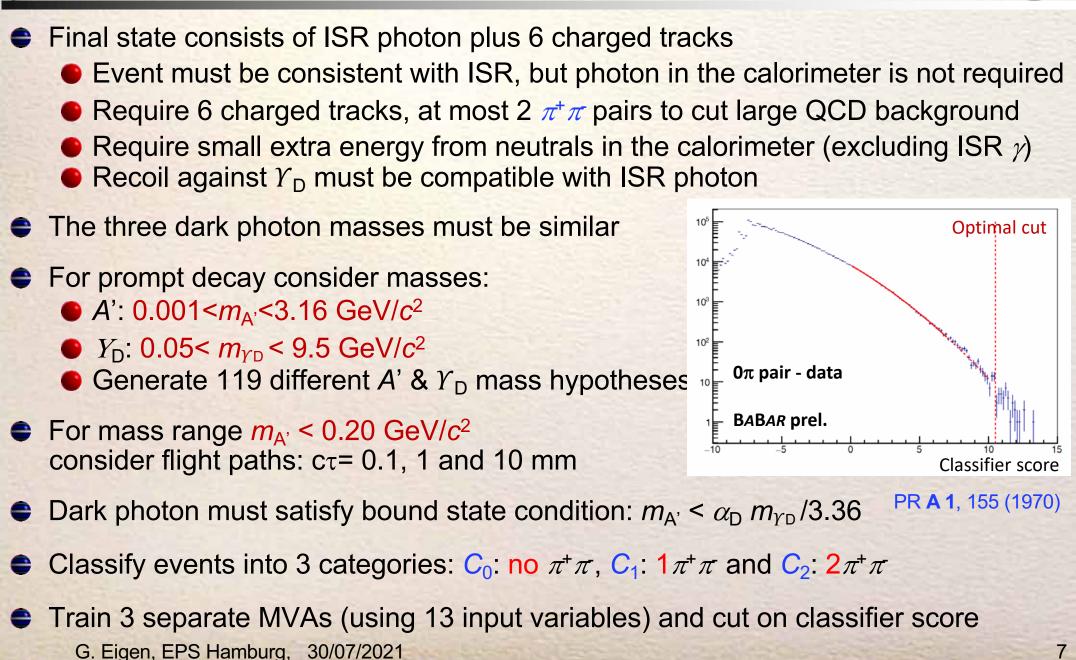
new axion/axion-like particle, coupling to SM gauge and fermion fields

B factories provide tests of vector, scalar and axion-like portals in the lower-mass region



Search for Self-interacting Dark Matter

Search for Self-interacting Dark Matter

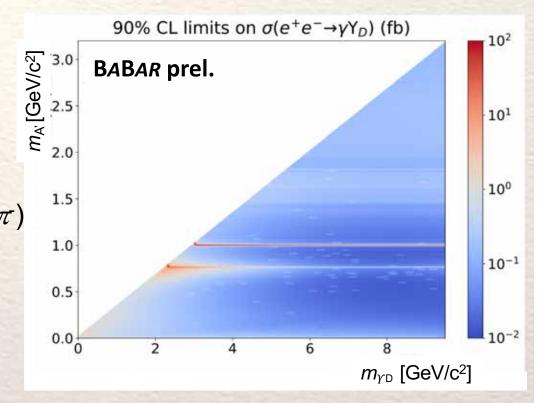

- A dark photon A' may couple to a dark fermion antifermion pair $(\chi \overline{\chi})$
- If the A'- χ coupling constant α_D is large enough, the $\chi \overline{\chi}$ pair could form a bound state, darkonium
- This represents self-interacting dark matter
- The lowest states are J^{PC}=0⁻⁺ (pseudoscalar) and J^{PC}=1⁻ (vector); in analogy with the SM called η_D and Υ_D

- These states may be produced in $e^+e^- \rightarrow A' \eta_D$, $\eta_D \rightarrow A'A'$ and $e^+e^- \rightarrow \gamma \Upsilon_D$, $\Upsilon_D \rightarrow A'A'A'$
- BABAR searched for e⁺e⁻→γY_D, Y_D→A'A'A', A'→ e⁺e⁻, μ⁺μ, π⁺π via γ-A' kinetic mixing ε
- Data collected at $\Upsilon(4S)$, $\Upsilon(3S)$, $\Upsilon(2S)$ and off-resonance: $\mathcal{L}_{int} = 514 \text{ fb}^{-1}$
- The decay may be either prompt (primary vertex) or delayed (secondary vertex)

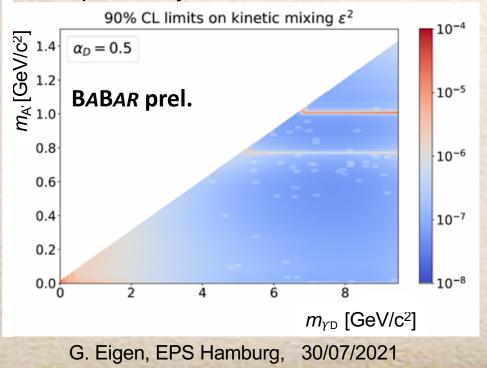
Event Selection

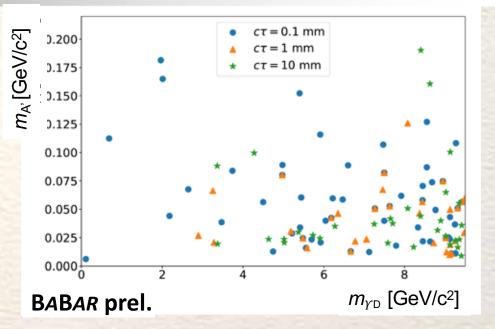
Results for Prompt Decays

- Combine events of all categories into a single sample
- Define the $(m_{A'}, m_{YD})$ signal region: $(m_{A'} \pm 4 \sigma_{mA'})$ and $(m_{YD} \pm 4 \sigma_{mYD})$
 - Estimate backgrounds in region: $(m_{A'} - 4\sigma_{mA'}, m_{A'} + 4\sigma_{mA})$ and $(m_{YD} - 8\sigma_{mYD}, m_{YD} - 4\sigma_{mYD})$ & $(m_{YD} + 4\sigma_{mYD}, m_{YD} + 8\sigma_{mYD})$


- See 69 signal events after applying all selection criteria
- The most significant measurements contain 2 events in a signal window

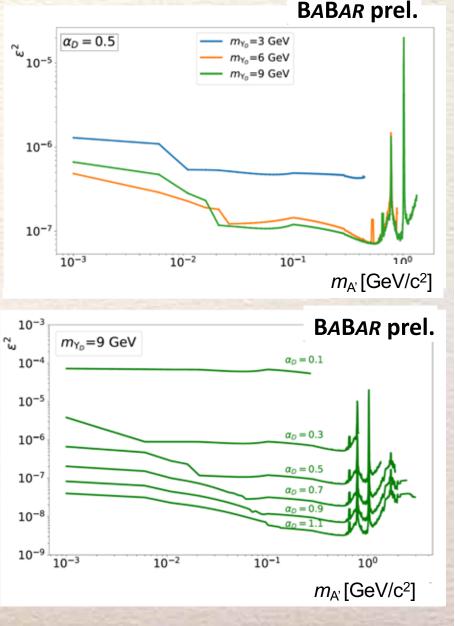
90% CL Upper Limits for Prompt Decays


- Scan the $(m_{A'}, m_{\gamma D})$ plane in steps of the mass resolutions
 - $\sigma_{mA'}$ =1-5 MeV depending on $m_{A'}$
 - $\sigma_{mYD} = 5-35$ MeV depending on m_{YD}
- Set 90% confidence level upper limits on the $e^+e^- \rightarrow \gamma \Upsilon_D$ cross section using a profile likelihood method
- Enhancements near 0.8 GeV/c² in m(π⁺π) and 1.0 GeV/c² in m(K⁺K⁻) come from ρ⁰ and φ decay backgrounds
 → increases cross section upper limits to 1-100 fb⁻¹
- No other enhancements are seen
 → 90% CL cross section upper limits are 10⁻² to1 fb



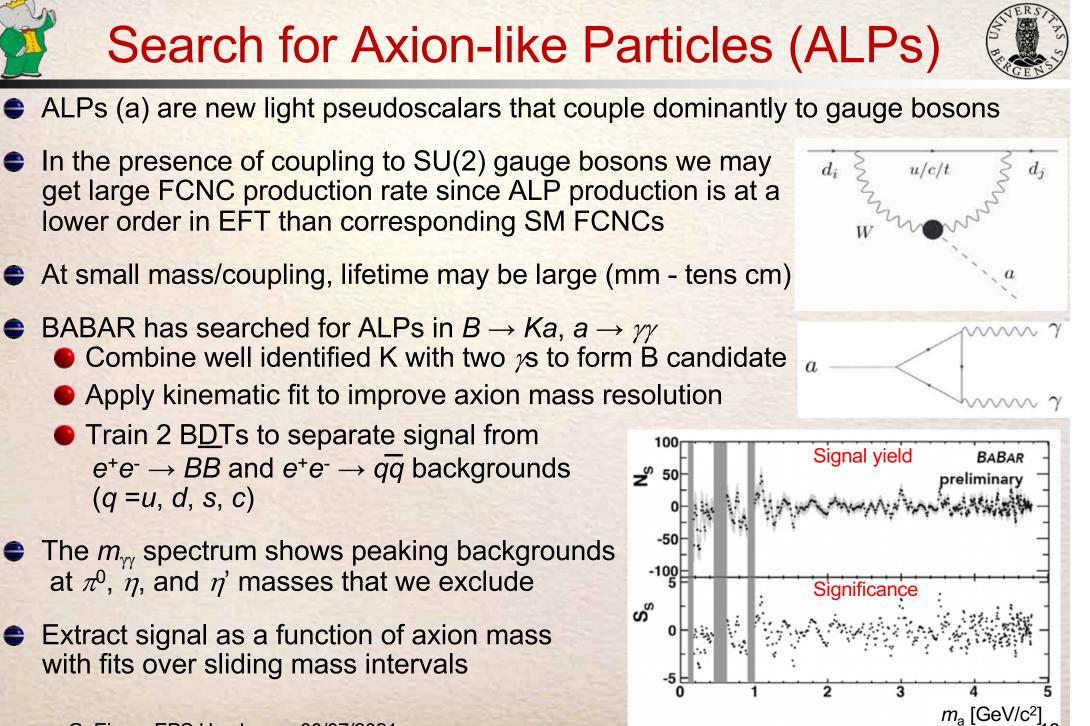
90% CL Upper Limits on Kinetic Mixing ε

- For low-mass dark photons, lifetime may become longer \rightarrow search for events with decay vertices of $c\tau = 0.1$, 1 and 10 mm
- We follow a similar procedure as for the analysis of prompt decays
- We observe 56, 33 and 31 events for $c\tau = 0.1$, 1 and 10 mm decay lengths, respectively

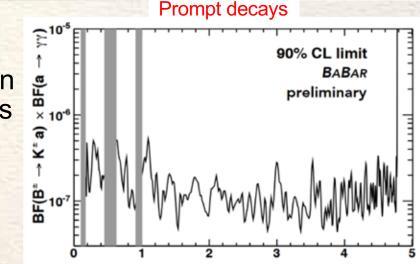

- No significant signal is observed for any lifetime
- We extract 90% CL upper limits on the kinetic mixing parameter ε^2 in an iterative procedure taking lifetime into account
- ⇒ Dark photon lifetime is independent of α_D → set upper limits for different α_D

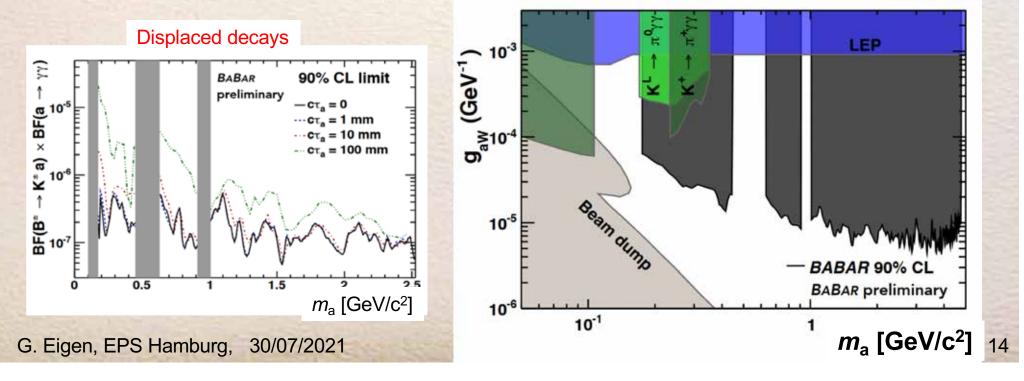
G. Eigen, EPS Hamburg, 30/07/2021

Constraints on Kinetic Mixing Parameter


- We set different 90% CL upper limits on the kinetic mixing parameter ε^2 as a function of $m_{A'}$ for different values of m_{YD} and α_D
- We achieve improved upper limits for larger $m_{A'}$
- We achieve improved upper limits for larger $m_{\rm YD}$
- We achieve improved upper limits for larger $\alpha_{\rm D}$
- The lowest value of ε^2 is achieved for $m_{\rm A'} \approx 0.5 \text{ GeV}/c^2$, $m_{\rm YD} = 9 \text{ GeV}/c^2$ and $\alpha_{\rm D} = 1.1$
- Belle II will eventually improve these limits

Search for Axion-like Particles

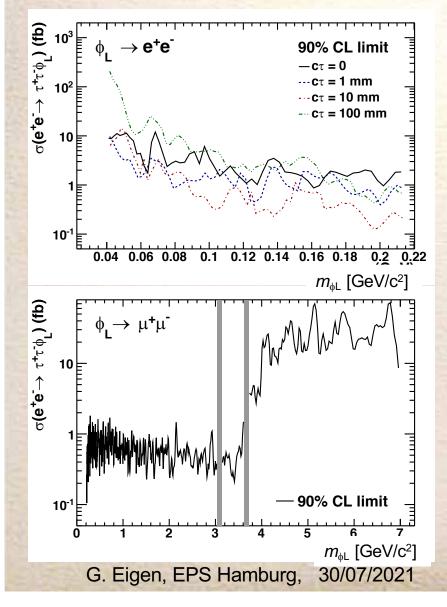


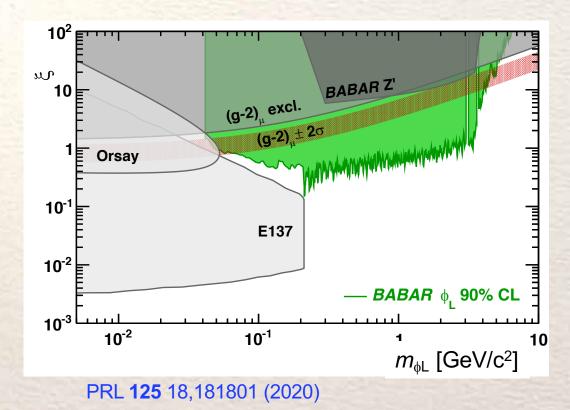


See no significant signals

- Set 90% CL upper limits on the branching fraction $B \rightarrow Ka, a \rightarrow \gamma\gamma$ for prompt and displaced decays
- Set 90% CL upper limits on a-W coupling parameter $g_{aW} \rightarrow$ improvements over two orders of magnitude over a large mass range

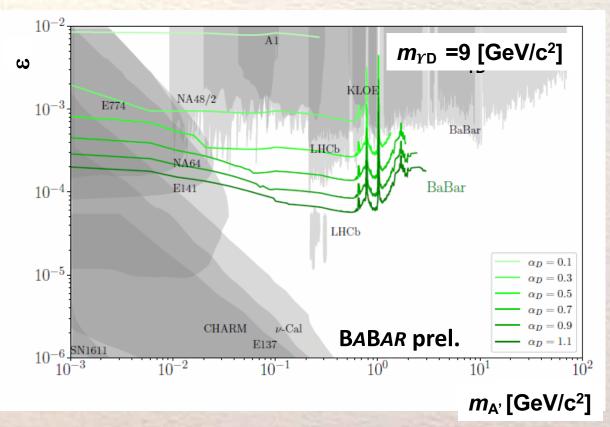
90% CL upper limits on a-W coupling parameter m_a [GeV/c²]


Search for Leptophilic Dark Scalar

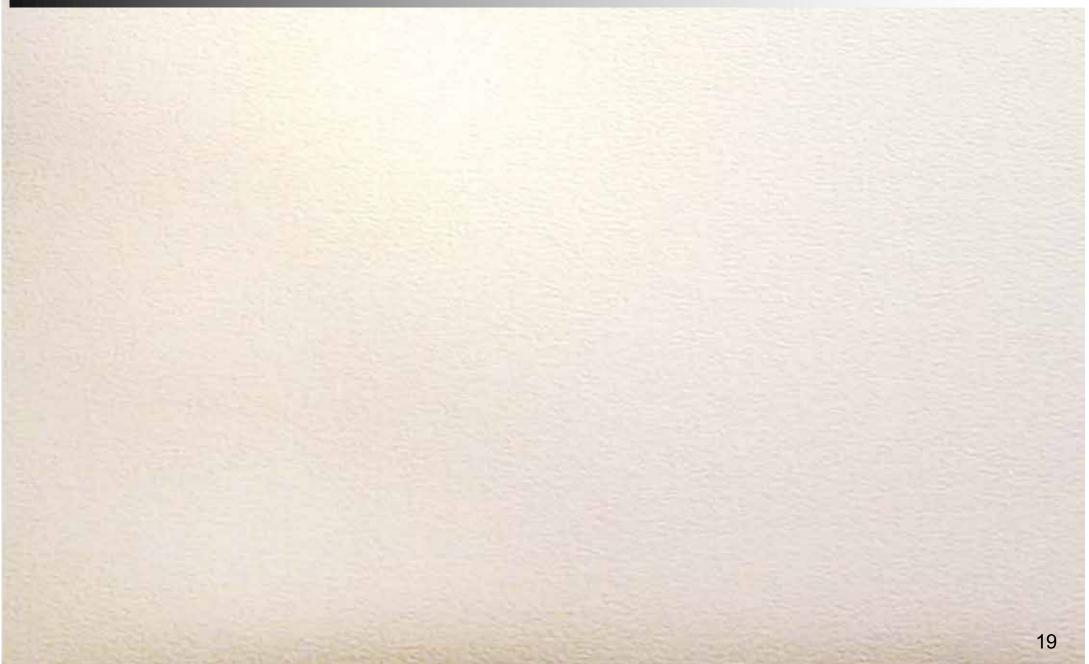

Search for Leptophilic Dark Scalar • A new light scalar ϕ_1 is predicted in BSM models that can mix with the Higgs boson Experimental constraints disfavor interactions with quarks but interaction to leptons are permitted (leptophilic) prompt arXiv:2104.03281 ۳ Leptophilic scalar could explain g-2 discrepancy and the KOTO experiment excess in $K_1 \rightarrow \pi^0 \nu \overline{\nu}$ -100 arXiv:2001.06522 $\phi_{\rm L}$ couples preferentially to $\tau_{\rm S}$ ഗ് BABAR has searched for $e^+e^- \rightarrow \tau^+ \tau^- \phi_L$ with $\phi_{\rm L} \rightarrow e^+e^-, \mu^+\mu^-$ ($\mathcal{L}=514 \text{ fb}^{-1}$) $m_{\rm \phi L}$ [GeV/c²] • Consider all τ^+ to one-prong decays = 1 mm z^{∽10} Optimize analysis for each final state and prompt -100 or long lived ϕ_1 using individual BDT selection ഗ് Extract signal as a function of ϕ_1 mass with fits over sliding intervals 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 Signal efficiency varies between 0.2-26% $m_{\rm oL}$ [GeV/c²] G. Eigen, EPS Hamburg, 30/07/2021

Upper Limits on Leptophilic Dark Sector

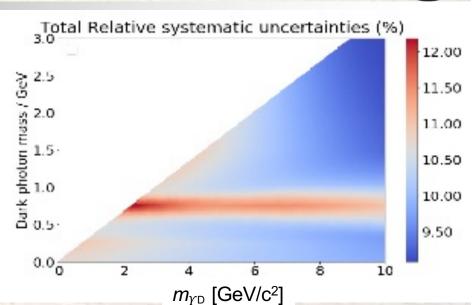
See no signal and extract 90% CL upper limits on the cross sections $\sigma(e^+e^- \rightarrow \tau^+ \tau \phi_L [\rightarrow e^+e^-, \mu^+\mu^-])$, and the ϕ_L lepton coupling parameter ξ


- Significant improvement over previous bounds
 - Exclude large g-2 parameter space below $m_{\tau\tau}$
 - Belle II will reduce bounds

Conclusions


- Present e⁺e⁻ colliders provide a unique opportunity for testing the concepts of dark sectors via portals to the SM at low energies
- BABAR has conducted a rich program to look for dark matter effects and has set many stringent 90% CL upper limits on cross sections and couplings
- The most recent BABAR results include world-leading constraints on self-interacting dark matter, axion-like particles and leptophilic dark scalars
- There are still new analyses ongoing
- In the long run Belle II will improve these limits

G. Eigen, EPS Hamburg, 30/07/2021 Thank you for your attention

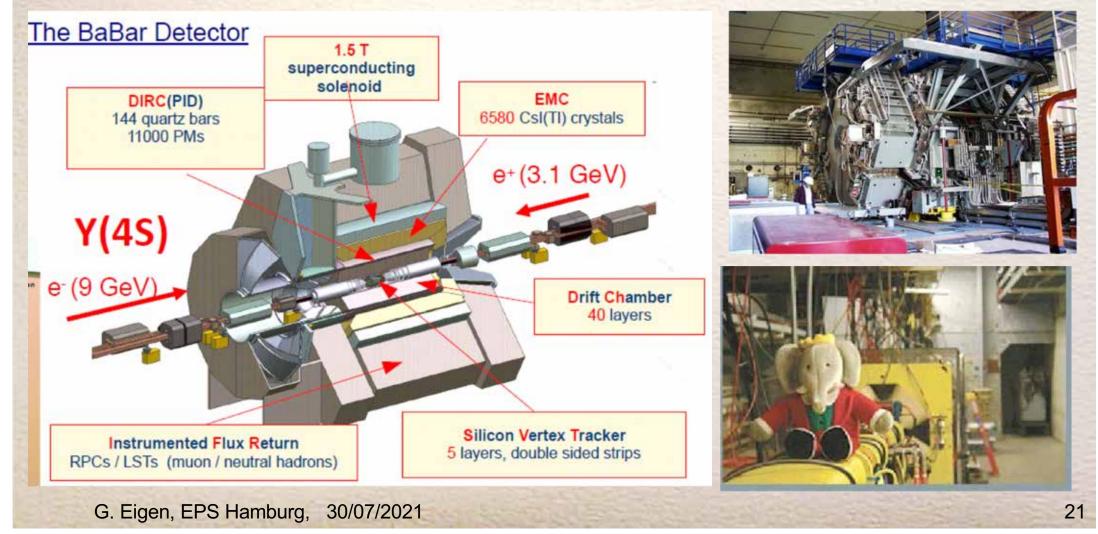

Systematic Uncertainties

- Monte Carlo statistics: <1%</p>
- Interpolation as a function of $(m_{A'}, m_{YD})$: < 8%
- PID uncertainties (added linearly)
 muon: 2%
 pion: 2%

electron: 1%
 The final error depends explicitly on the final state

- → C_0 : 6-12%, C_1 :8-12%, C_2 : 10-12%
- Luminosity: 0.6%
- ➡ Tracking efficiency: 0.2% per track ➡ 1.2% in total
- Branching fraction for A' $\rightarrow e^+e^-$, $\mu^+\mu$, $\pi^+\pi$: <1%

• Combined systematic error depends on $(m_{A'}, m_{YD})$: 9.5-12%



G. Eigen, EPS Hamburg, 30/07/2021

The BABAR Detector

- BABAR collected ~500 fb-1 around the Y(4S), Y(3S) and Y(2S) resonance between 1999 -2008
- Collaboration is still active after more than 10 years of data taking

