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“Invisible threads are the strongest ties.” 
Friedrich Nietzsche (1844-1900)
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keV GeV 100TeV

Dark matter: What is it?

Lyman-α forest bounds 
from small-scale structure

Considered here:
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Figure 8. ��
2 profile as a function of 1 keV/mX for the four configurations: Lyman-↵ + XQ-100

(dark blue), Lyman-↵ (z < 4.5) + XQ-100 (blue), Lyman-↵ (z < 4.1)+ XQ-100 (light blue), DR9
Lyman-↵ (z < 4.5) + XQ-100 (red with open circles). Each point shows the ��

2 obtained from a
profiling method, i.e. after minimization over all other free parameters. The curves are the result of
a parabolic fit to the points, extrapolated into the negative region.

This only had a mild impact on the constraints, which led to mX > 4.7 keV for eBOSS
(z<4.5) + XQ-100. Finally, we give the correlation coefficients between the free parameters
of the fit in appendix B. The 1/mX parameter does not exhibit significant correlation with
any of the parameters describing the thermal history.

As our most robust bound on WDM, we therefore take the eBOSS (z<4.5) + XQ-100
configuration, marginalizing over the cosmological, astrophysical and nuisance parameters
described in table 1. This leads to mX > 5.3 keV (95% CL), or equivalently to a constraint
on the mass of a non-resonantly produced sterile neutrino ms > 34 keV (95% CL).

4 Conclusions

In this paper, we present an update of the constraints we derive on several cosmological
parameters using Lyman-↵ data, either alone or in combination with CMB and BAO data.
Compared to the previous study of PY15 [17], we update both large-scale and small-scale
data sets: we use the most recent 1D Lyman-↵ flux power spectrum measured with the DR14
BOSS and eBOSS data of the SDSS, as well as the newest Planck 2018 data release.

We perform two statistical analyses in parallel: one based on a Bayesian and the other
on a frequentist interpretation. The two approaches produce results that are in excellent
agreement, demonstrating the robustness of the study. In order to be conservative, we choose
to always report as our final result the largest (and hence weakest) bound, whether on the
neutrino masses

P
m⌫ or on the inverse of the mass of a thermal relic 1/mX .
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[Palanque-Delabrouille et al. 1911.09073]

[but see also Garzilli, Ruchayskiy, Magalich, Boyarsky, 1912.09397]

Lyman-α constraints on dark matter
▪ Recent analysis of 1D Lyman-α flux power spectrum 
   based on SDSS DR14 BOSS/ BOSS data
▪ Hydrodynamical simulation based on [Baur et al.1512.01981]  
▪ Interpreted in thermal dark matter or 'warm dark matter' (WDM)
.

) mWDM > 5.3 keV



Non-thermalized dark matter 
or Feebly Interacting Massive Particles (FIMPs)

▪ Only production, no annihilation 
▪ Dependence on initial conditions (inflation/reheating)
▪ Additional assumptions to be made, here:
   Vanishing initial abundance 



Freeze-in production

▪ Here: IR-sensitive scenario: 
   (renormalizable operators)

[Bolz, Buchmüller, Plümacher 1998; 
Bolz, Brandenburg, Buchmüller 2001; 

Pradler, Steffen 2006]
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[McDonald 2002; 
Covi, Roszkowski, Small 2002; 

Choi, Roszkowski 2005; 
Asaka, Ishiwata, Moroi 2006; 

Petraki, Kusenko 2008; 
Hall, Jedamzik, March-Russell, West, 2009]

▪ Occasional production from thermal bath



SuperWIMP production
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[Covi, Kim, Roszkowski 1999; 
Feng, Rajaraman, Takayama 2003]

▪ Late decay of frozen-out particle

▪ DM density independent of DM coupling

Only if M ➔ SM SM forbidden
(Z2 symmetry)



[Covi, Kim, Roszkowski 1999; 
Feng, Rajaraman, Takayama 2003]

▪ Late decay of frozen-out particle

▪ DM density independent of DM coupling

Only if M ➔ SM SM forbidden
(Z2 symmetry)

Freeze-in in general always present!

(⌦h2)� = m�/mmother (⌦h2)mother
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Lyman-alpha constraints

1) Free streaming length:

▪ Three ways of using the WDM results for non-thermal dark matter:

�fs =

Z zprod

0
dz

hvi(z)
H(z)

▪ Consider characteristic mean velocity or velocity dispersion

▪ Compare WDM to non-thermal DM, we obtain:

of us applied to NCDM in e.g. Refs. [3–5, 8, 21]. First, before going to generic constraints for
pure SW and FI FIMPs obtained by fitting to the FIMP transfer functions in Sec. 3.2.2, we
derive an estimate of the Lyman-↵ constraints in Sec. 3.2.1. Notice that the latter constraints
are only valid for the FIMP accounting for 100% of the DM content. In Sec. 3.2.3, we address
the case of the mixed SW-FI scenarios or equivalently cases where a given FIMP cannot
account for all the dark matter by applying the area criterion introduced in [21].

3.2.1 Approximate Lyman-↵ bound from r.m.s velocity

If the dark matter distribution is relatively simple, with e.g. one single maximum, one can
expect that an estimate of the bound on the FIMP mass can be derived by comparing the
typical velocity of the NCDM candidate to the one of the thermal WDM for which dedicated
hydrodynamical simulations have been performed. Here we follow the same approach as
the one proposed by [3]. In the latter case, an estimated Lyman-↵ bound was obtained
by determining for which mass the velocity dispersion of the FIMP today,

p
hp2i0/m� =p

hq2?iTncdm/m�T�(t0), equals the one of the thermal WDM saturating the Lyman-↵ bound.
This translates into the equation:

m� . 1.75 keV ⇥
p
hq2?iTncdm ⇥

 
m

Ly↵
WDM

keV

!4/3

, (3.6)

where
p
hq2?i is equal to the �̃ of [3]. Notice that Ref. [4] derived the same constraints

by equating the equation of states of the FIMP and the WDM following the early work
of [25]. The equation (3.6) was also used in [5] in the context of FI to be compared to other
methodologies. In those references it has already been argued that (3.6) can provide a very
good estimate of the Lyman-↵ constraint for FIMPs.

When DM is produced at 100% through SW or FI mechanisms, the estimate for the
Lyman-↵ bound on FIMP DM of eq. (3.6) gives the stringent bound:

(
m

FI

� & 16 keV ⇥ � for FI through decays,

m
SW

� & 3.8 keV ⇥ �
�
R

SW

�

��1/2
for SW,

(3.7)

using the stringent WDM limit m
Ly↵
WDM

= 5.3 keV from [23]. These bounds reduce to m
FI
� <

4.0 ⇥ � keV and m
SW
� < 0.96 ⇥ �

�
R

SW

�

��1/2
keV when using the conservative bound of

m
Ly↵
WDM

= 1.9 keV from [24]. Let us emphasize that the bounds derived in eq. (3.7) would
only be valid if the NCDM account for all the DM.

In the cases where NCDM would only account for part of the DM content dedicate
analysis should be performed to compare to the case of thermal WDM [26]. However, as
suggested in [3], when multiple mechanisms are at the origin of DM relic abundance one
could still try to estimate the r.m.s. DM velocity today.7 Indeed, considering the sum of
NCDM velocity distributions, it is easy to show that:

hp2i0
m�

=
T�(t0)

m�

X

prod

 
⌦prod
� h

2

⌦�h
2

!
⇥
�
hq2?iT2ncdm

�
|prod , (3.8)

7 In the case [3], an expression similar to (3.8) was obtained for DM produced from FI through decays and
from scatterings.
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with [1, 3], we get

f
dec

� (q) = 2gB
R�

�3

s
⇡�

q
exp

⇣
�q

�

⌘
, (2.9)

with � =
m

2

B �m
2

A

m
2

B

(2.10)

and R� =
M0�B!A�

m
2

B

, (2.11)

where we denote f(1, q) as f(q) for simplicity, gB is the number of dof of B, TFI is the
Freeze-in temperature which is typically TFI ⇠ mB/3 for FI in a radiation dominated era
through renormalisable interactions and M0 is evaluated at the FI temperature M0(TFI).3 A
more general expression of @xf� can be found in [2].

In Fig. 3, we provide examples of velocity distributions, q
2
f�(q) as a function of the

rescaled momentum q = p/T , arising from both decays and scatterings, see more details in
Sec. 2.2.2 below. From this figure it is very clear that the overall form of the PSD for DM
from FI is similar to the one of a thermal dark matter candidate with a distribution function
f(q) = fFD(q) (shown with dot dashed geen line). Also notice that the FI distributions peak
around q = 2.5 while the FD distribution peaks around 3. Indeed, in the case of FI from
decays, the averaged nth power of the DM momentum of (2.9) is given by

hqni|dec =
4

3
p
⇡

�

✓
5

2
+ n

◆
⇥ �

n
. (2.12)

In particular, for uncompressed spectrum with � ' 1, in eq. (2.10), hqi|dec = 5/2 for dark
matter arising from FI through decays while hqi|FD ' 3 for a FD thermal distribution eval-
uated at the bath temperature as in [1]. DM from freeze-in is thus typically slightly colder
than a thermal dark matter candidate produced at the same time and inserting a factor
Rncdm = hqi|dec/hqi|FD allows to partially compensate for this as illustrated in Fig. 3. Con-
sidering mass degenerate mother B and daugther A particle allows the interesting possibility
to have cold light FIMPs [1, 2].

2.2.2 Freeze-in from scatterings

In the case of BB
0 ! A

0
� scatterings, assuming a Boltzmann distributions for the bath

particles B and B
0, we have4:

Cscat[f�] =
1

32⇡2Ep

Z

smin

ds

Z

Emin

A0

dEA0 exp

✓
�E + EA0

T

◆
�̂(s)

2

sp
(p · pA0)2 � (m�mA0)2

(2.13)
where �̂(s) denotes the reduced BB

0 ! A
0
� cross-section, function of the center of mass

energy squared s, satisfying to:
d�̂

dt
=

1

8⇡s
|M|2 (2.14)

3Remember that g⇤, and thus M0 have been assumed to be constant all over freeze-in production.
4In eq. (2.13), we have an extra factor of 1/2 compared to [1], which we believe is a typo, while the

numerical integration fully agree with the results of [3].
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▪ Difficult for mixed superWIMP-freeze-in scenario 

[see also Bae, Kamada, Liew, Yanagi, 2018; Ballesteros, Garcia, Pierre, 2021; ...] 



where          = power spectrum 

Lyman-alpha constraints

2) Parametrization of the transfer function 

▪ Consider transfer function, computed with CLASS

[Bode, Ostriker, Turok, 2001;Viel, Lesgourgues, Haehnelt, Matarrese Riotto, 2005] 

▪ Fit transfer function with

▪ Compare to WDM bounds, for freeze-in (        ):� = 1

▪ Freeze-in and superWIMP well fitted with               and 

[Lesgourgues et al. 2011]

T 2
X(k) =

PX(k)

PCDM(k)
P (k)

where the sum runs over the FIMP production mechanisms, ⌦prod
� refers to the � relic abun-

dance from a given mechanism while ⌦� is the total relic abundance. A first naive estimate
of the Lyman-↵ bound in the case of mixed scenarios could thus be extracted by comparing
this velocity to the one of thermal WDM saturating the Lyman-↵ bound when ⌦�h

2 = 0.12.
Within this framework, we get:

m� . 1.75 keV ⇥
 
m

Ly↵
WDM

keV

!4/3

⇥

2

4
X

prod

 
⌦prod
� h

2

0.12

!
⇥
�
hq2?iT2ncdm

�
|prod

3

5
1/2

. (3.9)

where it has been assumed that ⌦�h
2 = 0.12 in order to compare to the thermal WDM

constraints. Another intermediate approach for mixed scenarios would be to use the area
criterion introduced in [21], see Sec. 3.2.3 below.

Notice that in all cases considered in this paper, pure SW, FI or mixed SW-FI scenarios,
we will get to the conclusion that eqs. (3.7) and (3.9) provide a very good estimate (up to
XXX%) of more involved analysis making use of a Boltzmann solver such as class to obtain
the precise power spectrum of the FIMP DM.

3.2.2 Pure FI, SW and ↵, µ parametrization of the transfer functions

In order to parametrise the small scale suppression of the matter power spectrum within
a given NCDM model with respect to the equivalent CDM case, one can express the ratio
between the CDM power spectrum, PCDM(k), and the power spectrum of some new DM
species X, PX(k), in terms of the transfer function TX , defined as

PX(k) = PCDM(k)T 2

X(k) , (3.10)

where k is the wavenumber. It has been shown that the NCDM T
2(k) can usually be

parametrised in terms of a finite set of parameters and physical inputs.
In particular, in the thermal WDM case, Refs. [27, 28] use the following parametrisation

to describe the transfer function:

TX(k) =
�
1 + (↵Xk)2µ

��5/µ
, (3.11)

where µ is a dimensionless exponent and ↵X is the breaking scale. A more general parametri-
sation that can be applied to a larger set of NCDM models was also introduced in [17, 21, 29].
In the case of thermal WDM, Ref. [28] obtained a very good fit to the N-body simulations
for µ = 1.12 and

↵WDM = 0.049
⇣
mWDM

1 keV

⌘�1.11
✓

⌦WDM

0.25

◆0.11✓
h

0.7

◆1.22

h
�1Mpc , (3.12)

in terms of the WDM mass mWDM. We note that this prescription provides a very good
fit to the thermal WDM transfer functions obtained with class, provided that the option
ncdm fluid approximation = 3 has been selected.8

As illustrated in Fig.XXX the transfer function of eq. (3.11) provides a very good fit
to the case of DM produced at 100% through FI or through SW mechanism. For the fitting

8 Using ncdm fluid approximation = 3 prevents class from using the perfect fluid approximation, which
is not accurate for NCDM scenarios (as described in [16]).
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↵FI /
⇣m�

�

⌘�0.833
, ↵SW / R�0.416

�

⇣m�

�

⌘�0.833

mFI > 15.2 keV



Lyman-alpha constraints

3) Area criterium

▪ Consider ratio of 1D power spectra, computed with CLASS

[Schneider 2016, Murgia, Merle, Viel, Totzauer, Schneider 2017] 

curves, we have checked that for µ = 1.12, as in the thermal WDM case, we should have:

↵FI = 0.19

✓
m�/�

1 keV

◆�0.833✓
g⇤S(t0)

g⇤S(TFI)

◆0.278

h
�1Mpc , (3.13)

↵SW = 0.059
�
R

SW

�

��0.416
✓
m�/�

1 keV

◆�0.833✓
g⇤S(t0)

g⇤S(TSW)

◆0.278

h
�1Mpc , (3.14)

where the parameter dependency of the breaking scales was inspired by the analytic estimate
of the Lyman-↵ bound of eq. (3.6).

The numerical prefactor in eqs. (3.13) and (3.14), on the other hand, has been obtained
by doing a one-parameter fit based on the actual transfer functions produced by class. To
obtain this number N models were used in the fit, resulting in a final error on the prefactors
of M%. [dch: I will complete these numbers once the fits are done]

3.2.3 Mixed scenarios and area criterion

An alternative approach to the very simple estimate of the eq. (3.9) for the Lyman-↵ bound
for mixed scenarios would be to use the area criterion introduced in Refs. [21] based on
the earlier work of [30]. This has recently been done for NCDM models in Ref. [5, 31]. As
underlined by the authors of the original work [21] introducing this criterion, let us emphasize
that the area criterion has some arbitrariness in defining the integration limits, and should,
therefore, only be used after careful calibration with an example WDM model.

Here we follow the procedure stated in Ref [21]. For a given DM scenario X, we first
compute the 3D power spectrum PX(k) using class. We determine then the deviation from
the corresponding CDM scenario by evaluating the ratio:

r(k) =
P

X
1D(k)

P
CDM

1D (k)
with P

X
1D(k) =

Z 1

k
dk

0
k
0
PX(k0) , (3.15)

where P
X
1D is the 1D power spectrum in the DM scenario X.9 This ratio shall be estimated

over the range of scales probed by the Lyman-↵ observations. In [21] the suggested range
corresponding to the MIKE/HIRES+XQ-100 combined data set, used in [32] to derive the
stringent bound obtained here, was taken to be:

[kmin, kmax] = [0.5h/Mpc, 20h/Mpc] . (3.16)

More precisely, in order to quantify the suppression of the power spectrum in the NCDM
model X, one should compute the area estimator:

�AX =
ACDM �AX

ACDM

with AX =

Z kmax

kmin

dk
0
r(k0) , (3.17)

and ACDM = kmax � kmin by definition.
For the cosmological model and precision parameters considered here, we get:

�AWDM = 0.33 for mWDM = 5.3 keV. (3.18)

9Using class we have evaluated the integral in eq. (3.15) up to [llh: Deanna please check units:
k = 103

h/Mpc] [dch: checked and agree] at which scale the P (k) is su�ciently suppressed to a↵ect in a
negligible way the area estimator. [llh: Confirm with new alpha:] Indeed using the T

2
WDM(k)PCDM(k)

as a proxy for PWDM(k), with T (k) defined in eqs. (3.11) and (3.12), we get equal value of �AWDM up to 2
significant digits even though the power spectra begin to di↵er significantly from k = 102

h/Mpc.
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▪ Compute area under the curve

curves, we have checked that for µ = 1.12, as in the thermal WDM case, we should have:
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where the parameter dependency of the breaking scales was inspired by the analytic estimate
of the Lyman-↵ bound of eq. (3.6).

The numerical prefactor in eqs. (3.13) and (3.14), on the other hand, has been obtained
by doing a one-parameter fit based on the actual transfer functions produced by class. To
obtain this number N models were used in the fit, resulting in a final error on the prefactors
of M%. [dch: I will complete these numbers once the fits are done]

3.2.3 Mixed scenarios and area criterion

An alternative approach to the very simple estimate of the eq. (3.9) for the Lyman-↵ bound
for mixed scenarios would be to use the area criterion introduced in Refs. [21] based on
the earlier work of [30]. This has recently been done for NCDM models in Ref. [5, 31]. As
underlined by the authors of the original work [21] introducing this criterion, let us emphasize
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where P
X
1D is the 1D power spectrum in the DM scenario X.9 This ratio shall be estimated

over the range of scales probed by the Lyman-↵ observations. In [21] the suggested range
corresponding to the MIKE/HIRES+XQ-100 combined data set, used in [32] to derive the
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▪ For freeze-in (        ):� = 1

mFI > 15.3 keV

▪ Suitable for mixed scenario

[see also D’Eramo, Lenoci, 2020; Egana-Ugrinovic, Essig, Gift, LoVerde 2021]
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Chemical equilibrium is a commonly made assumption in the freeze-out calculation of co-
annihilating dark matter. We explore the possible failure of this assumption and find a new
conversion-driven freeze-out mechanism. Considering a representative simplified model inspired
by supersymmetry with a neutralino- and sbottom-like particle we find regions in parameter space
with very small couplings accommodating the measured relic density. In this region freeze-out takes
place out of chemical equilibrium and dark matter self-annihilation is thoroughly ine�cient. The
relic density is governed primarily by the size of the conversion terms in the Boltzmann equations.
Due to the small dark matter coupling the parameter region is immune to direct detection but
predicts an interesting signature of disappearing tracks or displaced vertices at the LHC.

INTRODUCTION

The origin and the nature of the dark matter (DM)
in the Universe is one of the most pressing questions in
particle- and astrophysics. Despite impressive e�orts to
uncover its interactions with the Standard Model (SM)
of particle physics in (in)direct detection and accelerator
based experiments, DM remains elusive and, so far, our
understanding is essentially limited to its gravitational
interactions (see e.g. [1, 2]). It is therefore of utmost
interest to investigate mechanisms for the generation of
DM in the early Universe that go beyond the widely stud-
ied paradigm of thermal freeze-out, and that can point
towards non-standard signatures.

In this spirit we subject the well-known co-annihilation
scenario [3] to further scrutiny and investigate the im-
portance of the commonly made assumption of chem-
ical equilibrium (CE) between the DM and the co-
annihilation partner. This requires solving the full set of
coupled Boltzmann equations which has been performed
in the context of specific supersymmetric scenarios [4, 5].
Here we consider a simplified DM model and explore the
break-down of CE in detail finding a new, conversion
driven solution for DM freeze-out which points towards
a small interaction strength of the DM particle with the
SM bath. While the smallness of the coupling renders
most of the conventional signatures of DM unobservable,
new opportunities for collider searches arise. In partic-
ular we find that searches for long-lived particles at the
LHC are very powerful tools for testing conversion-driven
freeze-out.

The structure of the paper is as follows: We begin by
introducing a simplified model for co-annihilations before
we present the Boltzmann equations which govern the
DM freeze-out. Next, we investigate conversion-driven
solutions to the Boltzmann equations and confront the
regions of parameter which allow for a successful gener-

ation of DM with LHC searches. Finally, we summarize
our results and conclude.

SIMPLIFIED MODEL FOR CO-ANNIHILATION

While the precise impact of the breakdown of CE be-
tween the DM and its co-annihilation partner will in gen-
eral depend on the details of the considered model, the
key aspects of the phenomenology can be expected to be
universal. As a representative case we choose a simpli-
fied model for DM interacting with quarks. We extend
the matter content of the SM minimally by a Majorana
fermion ⇤, being a singlet under the SM gauge group,
and a scalar quark-partner �q, mediating the interactions
with the SM and acting as the co-annihilation partner.
The interactions of the new particles among themselves
and with the SM are given by [6]

Lint = |Dµ�q|2 � ⇥⇤�qq̄
1� �5

2
⇤+ h.c., (1)

where q is a SM quark field, Dµ denotes the covariant
derivative, which contains the interactions of �q with the
gauge bosons as determined by its quantum numbers,
and ⇥⇤ is a Yukawa coupling. Here we choose q = b and
Y = � 1

3 . For the coupling ⇥⇤ = 1
3

⇧
2 e
cos �W

⇥ 0.17 our
simplified model makes contact with the Minimal Super-
symmetric SM where �b can be identified with a right-
handed sbottom and ⇤ with a bino-like neutralino. How-
ever, we will vary ⇥⇤ in our analysis. Nevertheless, we
will refer to the scalar mediator as sbottom, denoted by
�b, even though it does not share all the properties of a
super-partner of the b-quark. Note that choosing a top-
partner instead yields similar results although quantita-
tive di�erences arise due to the large top mass.

Explicit Example: Top-philic model

▪ Specific model:

▪ SUSY-inspired simplified model:
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FIG. 3. Left panel: Rates of annihilation (blue curves) and conversion (red curves) terms in the Boltzmann equation relative
to the Hubble rate as a function of x = m�/T for m� = 500GeV, meb = 510GeV, �� ⇤ 2.6 ⇥ 10�7. Right panel: Evolution of
the resulting abundance (solid curves) of eb (blue) and ⇥ (red). The dashed curves denote the equilibrium abundances.

tion at x = 1 (for a discussion of kinetic equilibration,
see [13]). The dependence of the final freeze-out den-
sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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FIG. 4. Relic density as a function of the coupling ��, for
m� = 500GeV, meb = 510GeV. The dotted blue line is the
result that would be obtained when assuming CE. The red
line shows the full solution including all conversion rates, the
gray dashed line corresponds to the solution when only decays
are considered. The shaded areas highlight the dependence
on initial conditions, Y�(1) = (0�100)⇥ Y eq

� (1). The central
curves correspond to Y�(1) = Y eq

� (1).

in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.

 Choose Majorana DM and scalar top-partner

▪ Yukawa-type interaction:
Rates for standard coupling (� = �0)
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relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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sity on the initial condition is also indicated in Fig. 4 by
the area shaded in red, and is remarkably small. There-
fore, conversion-driven freeze-out is largely insensitive to
details of the thermal history prior to freeze-out and in
particular to a potential production during the reheating
process. Note that this feature distinguishes conversion-
driven freeze-out from scenarios for which DM has an
even weaker coupling such that it was never in thermal
contact (e.g. freeze-in production [15]). Thus, while re-
quiring a rather weak coupling, the robustness of the con-
ventional freeze-out paradigm is preserved in the scenario
considered here.

As discussed before, conversions ⇥ � �b are driven by
two types of processes, decay and scattering. It turns
out that quantitatively both are important for determin-
ing the freeze-out density. To illustrate the importance of
scattering processes, we show the freeze-out density that
would be obtained when only taking decays into account
by the gray dashed line in Fig. 4. Furthermore, the gray
shaded area indicates the dependence on initial condi-
tions that would result neglecting scatterings. We find
that scattering processes, that are active at small x, are
responsible for wiping out the dependence on the initial
abundance in the full solution of the coupled Boltzmann
equations.

VIABLE PARAMETER SPACE

We will now explore the parameter space consistent
with a relic density that matches the DM density mea-
sured by Planck, �h2 = 0.1198 ± 0.0015 [14]. In the
considered scenario, for small couplings, �b�b† annihilation
is the only e�cient annihilation channel. Hence the min-
imal relic density that can be obtained for a certain point
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in the m�-meb plane is the one for a coupling �� that just
provides CE (but is still small enough so that ⇥⇥- and
⇥�b-annihilation is negligible). The curve for which this
choice provides the right relic density defines the bound-
ary of the valid parameter space and is shown as a black,
solid curve in Fig. 7. Below this curve a choice of ��

su�ciently large to support CE would undershoot the
relic density. In this region a solution with small �� ex-
ists that renders the involved conversion rates just large
enough to allow for the right portion of thermal contact
between �b and ⇥ to provide the right relic density. The
value of �� ranges from 10�7 to 10�6 (from small to large
m�). These values lie far beyond the sensitivity of direct
or indirect detection experiments.
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is a free parameter here [see Ibarra et al. 2009 for SUSY realization] 

[Provides rich phenomenology, see 
Garny, JH, Hufnagel, Lülf 1802.00814]



(⌦h2)FI + (⌦h2)sW = 0.12

Cosmological viable parameter
space

Over-abundant

Top-philic model: viable parameter space
[see also Garny, JH,1809.10135]
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(⌦h2)FI + (⌦h2)sW = 0.12

Freeze-in dominates

Top-philic model: viable parameter space
[see also Garny, JH,1809.10135]
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(⌦h2)FI + (⌦h2)sW = 0.12

superWIMP production
dominates

Top-philic model: viable parameter space
[see also Garny, JH,1809.10135]



– 6

– 8

– 11

10-5 0.01 10 104
100

104

106

108

1010

mχ [GeV]

Δm
[G
eV

]

— log10(��)

(⌦h2)FI + (⌦h2)sW = 0.12

Well separated for small couplings

� ��� ��� ���
��-��

��-��

��-�

��-�

Y
(=

 c
om

.  
nu

m
be

r 
de

ns
ity

)

x = mmother/T
��� � �� ��� ������-��

��-��

��-�

��-�

��� � �� ��� ������-��

��-��

��-�

��-� ����������
��-��

��-��

��-�

��-�
Top-philic model: viable parameter space

[see also Garny, JH,1809.10135]
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Top-philic model: viable parameter space
[see also Garny, JH,1809.10135]
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Prolonged freeze-out due to
bound state formation effects:
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Top-philic model: viable parameter space
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Lyman-alpha constraints
from area criterium
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LHCDV R-hadrons

Other constraints

Low masses constraint by 
long-lived particle 
searches at the LHC

Small mass splittings
constraint by BBN



Summary

▪ Lyman-α forest probes dark-matter momentum distribution

▪ Reinterpreted WDM bound for freeze-in, superWIMP and
   mixed scenario

▪ Analytic expressions for pure freeze-in and superWIMP

▪ Mixed scenario implemented in CLASS, area criterium

▪ Application to top-philic model 

▪ Cornered by Lyman-α, LHC bounds, BBN


