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The standard cosmological model

According to General Relativity, and confirmed by many observations, the Universe is expanding
with a rate described by

W. Freedman, Nature Astronomy, 1, 0169 (2017)
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Despite its success in the standard cosmological model suffers:

> Theoretical problems: What is the nature of Dark Energy?

>  Observational problems: Why the measure of the Hubble constant does not agree at the
level of the CMB and today? (There is a 4.6 sigma discrepancy)
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Gravitational-wave cosmology

GWs provide a direct measurement of the luminosity

distance
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Dark sirens

Redshift information taken from galaxy
catalogs
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Gravitational-wave cosmology difficulties

[d  Bright sirens: Few sources, detecting an EM counterpart is extremely rare and it is
possible only for close-by events.

Dark sirens: Many sources but Galaxy catalogs completeness rapidly decrease with
redshift, moreover the 3D sky localization volume often includes a thousands of galaxies.
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Dark sirens: Many sources but Galaxy catalogs completeness rapidly decrease with
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We need a new way to do cosmology with dark sirens
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Cosmology with Dark sirens: the source-frame mass

The idea is to exploit the relation between source-frame mass and detector-frame mass.

Taylor+, PRD, 023535 (2012)  Farr+, APIL, 883(2019)
Taylor+, PRD, 023502 (2012)
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Cosmology with Dark sirens: the source-frame mass

The idea is to use phenomenological description of the BHs source-frame mass distribution to
measure conjointly with cosmology
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Cosmology with Dark sirens: the source-frame mass

Simulated sources (fixing cosmology)

[  We simulate BBHs sources from a source-frame

o
S

[ Source frame

mass model which is a truncated
powerlaw+gaussian component. E 5 j | ;
= e
[d  The gaussian component has a peak at 40 solar ’ “ . W g0 A ar
masses (PISN) and the powerlaw has a hard — o
cut-off at 85 solar masses. The powerlaw | I\j

# Injections

decrease with a coefficient of -2.

20 4

- S ¢

T T T
60 80 100 120
myMg]

0
0

(A1 We choose a Planck cosmology and detectors

with O3-like sensitivities. 100- ‘—KL =5
[d  We fit jointly the source-frame mass spectrum : TH—\J 1LLL
iy

and cosmology 0 ==

T T
04 0.5 06 07 08
4

## Inject!

40
T T
0.2 0.3

SM+, arXiv: 2103.14663




Cosmology with Dark sirens: the source-frame mass

A There is a tight correlation between the estimation of the source-frame mass spectrum and
cosmology
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Cosmology with Dark sirens: the source-frame mass

A Cosmology and the source-frame mass distribution can be measured jointly.

A With this simulated population, the Hubble constant can be constrained to ~30% (at 90% CL)
level with 1024 events.
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The dark matter fraction
will not play a
fundamental role with
current sensitivities.
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Cosmology with Dark sirens: the source-frame mass

(A Population assumptions on the source-frame mass spectrum will be important even for dark

sirens analyses with galaxy surveys.

Since galaxy catalogs are incomplete and GW events not accurately localized, the source-frame
mass spectrum will implicitly provide information.

0.0° —— BBH Combined - 02 Result .
~= BBH + GW170817 - 02 Result Impact of population on GWTC-1 analyses:
= BBH Combined - New Result
0.04 | == BBH + GW170817 - New Result
-- GW170817 . .
3 BAH Condlrdd - gty ot o [d  Population assumptions already play a
= anc .
w03 SHOES fundamental role with ~6 GW events.
:50.02 .
z 1  We use a population model that match
o N well with HO~70 km/Mpc/s to show its
. , \53 ——————————— =1 .
. impact on 02.
0'0020 40 60 80 100 120 140

Hp (km s~ Mpc™?!)

11



Cosmology with Dark sirens: the source-frame mass

A Onthe other hand population assumptions will not be important when having an EM
counterpart (the redshift is well measured).

A Inthis case, it is sufficient to choose a population model that includes the masses estimated for

the events that we are analyzing.
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Conclusions

[d  Gravitational-wave sources provide a new way to study cosmology.

H

The bright siren and dark siren method with galaxy catalogs will become less and less viable as
we detect further GW events.

(A The knowledge of the source-frame mass distribution of BBHs can help to obtain a redshift
estimation.

(d It will be possible to measure jointly the source-frame mass distribution and cosmology using
thousands of GW sources.

(A Population assumptions also play a fundamental role for galaxy catalog-based analyses.

When the GW have an EM counterpart observed population assumptions will not matter*.
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How do we infer the population properties?

We want to describe the population with some parameters population parameters A

Nobs

p(A|{£B}, NObS) X p({x}, o 0bS|A)p(A) :> p({x}vNobs’A)p(A) :[p(NobS|A) JH p(fvi'NivA)

® Probability of detecting N_obs events given some
population parameters: A Poisson distribution

Using the bayes theorem...

e Probability of detecting the event, given the
current data set and the population parameters

B p(N; |z, AMII% |A)] (one since we detected the event)
p(z;|N;, A) = iy
l p(Ni| ) J ® Probability of detecting an event considering all

the possible data sets (realization of the noise)

Calculated from GW-likelihood 15




