

## A hybrid simulation of gravitational wave production in first-order phase transitions

# Ryusuke Jinno, Thomas Konstandin and **Henrique Rubira**

henrique.rubira@desy.de

(2010.00971 JCAP 04 (2021) 014)

# Before anything, the most important... Cool stuff always come with videos



## The message to take home...

New simulation scheme for sound-shell contribution in 1st order PT

# The message to take home...

New simulation scheme for sound-shell contribution in 1st order PT

#### Advantages:

- 1) fast (easier to explore parameter dependence);
- 2) Don't need to include the scalar field (solve particle physics scale in a cosmo simulation);
- 3) Incorporate shock front easily.

# The message to take home...

A user-friendly parametrization...

### Advantages:

- 1) fast (easier to explore parameter dependence);
- 2) Don't need to include the scalar field (solve particle physics scale in a cosmo simulation);
- 3) Incorporate shock front easily.

$$\Omega_{\rm GW} \propto rac{1}{(q/q_l)^{-n_l} + (q/q_l)^{-n_m} + (q_h/q_l)^{-n_m}(q/q_h)^{-n_h}}$$

 $q_l \simeq 1, \qquad q_h \simeq 1/\xi_{\text{shell}},$ 

$$n_l \in [2, 4], \quad n_m \in [-1, 0], \quad n_h \in [-4, -3],$$



# **1st Order Phase Transition (PT)**



# **Motivations for 1st Order PT**

# 1) LISA is flying in next decade

2) Electroweak Baryogenesis

## 3) BSM physics







(1811.11175)

(1302.6713)

(1702.00786)

## **GW from 1st Order PT -- State of the art**

# **GW from 1st Order PT -- State of the art**

## **Envelope approximation**



Energy contained in a thin non-collided yet shell (fluid or scalar) Konstandin, Huber (08)



See also Kamionkowski, Kosowsky, Turner (94) and Jinno, Takimoto (17a)

# **GW from 1st Order PT -- State of the art**

## **Envelope approximation**



Konstandin, Huber (08)



Energy contained in a thin non-collided yet shell (fluid or scalar)

See also Kamionkowski, Kosowsky, Turner (94) and Jinno, Takimoto (17a)

Latter, it became clear that the **sound shell** contribution is larger than the scalar



Enhanced by

$$\left( rac{eta}{H_{*}} 
ight) \, \, rac{\mathrm{Nucleation}}{\mathrm{rate}} \, \, \mathrm{O(100)}$$

# **GW from 1st Order PT -- State of the art**

## **Envelope approximation**



Energy contained in

a thin non-collided

yet shell (fluid or

scalar)

Konstandin, Huber (08)



See also Kamionkowski, Kosowsky, Turner (94) and Jinno, Takimoto (17a)

Konstandin (17) and Jinno, Takimoto (17b)

**Bulk flow** 



## Sound shell model

$$\frac{d\Omega_{\rm GW}(k)}{d\ln(k)} \sim$$

#### Hindmarsh (16)

 $\begin{cases} (kR_*)^5, & k\Delta R_*, kR_* \ll 1, \\ (kR_*)^1, & k\Delta R_* \ll 1 \ll kR_*, \\ (kR_*)^{-3}, & 1 \ll k\Delta R_*, R_*. \end{cases}$ 

(13, 15, 17)

## **GW from 1st Order PT -- State of the art**

### **Lattice simulations**



# Scalar Field (HEP scale) + bubble size (cosmo scale)

Huge hierarchy between those scales

# Our set up in a nutshell

Motivation: construct a simulation that doesn't need to solve the Higgs

Important: Higgs is only (indirectly) as a boundary condition

# Our set up in a nutshell

1*d* simulation



## Motivation: construct a simulation that doesn't need to solve the Higgs

how the velocity and

enthalpy evolve

Important: Higgs is only (indirectly) as a boundary condition

# Our set up in a nutshell

1d simulation



# Motivation: construct a simulation that doesn't need to solve the Higgs

Important: Higgs is only (indirectly) as a boundary condition

# Our set up in a nutshell



# Embed a 1d hydro simulation (fast to run) into a 3d lattice

# Our set up in a nutshell





# Embed a 1d hydro simulation (fast to run) into a 3d lattice

# Our set up in a nutshell





# Embed a 1d hydro simulation (fast to run) into a 3d lattice

Other advantages: More bubbles -- O(2500) Realistic nucleation (not simultaneous)

# Our set up in a nutshell





Calculate the GW at each time step in the 3d lattice

Henrique Rubira



Henrique Rubira



Simulation time

Henrique Rubira



Simulation time



# Henrique RubiraA double power<br/>lawResults $\frac{Q'}{\xi_{\text{shell}} \times (\langle w\gamma^2 v^2 \rangle_{3\text{d}}/w_{\infty})^2} \propto \frac{1}{(q/q_l)^{-n_l} + (q/q_l)^{-n_m} + (q_h/q_l)^{-n_m} (q/q_h)^{-n_h}}$

65 simulations (13x5) + 26 with larger box and high resolution



 $\xi_w$ 

## **Results**

A double power law

$$\frac{Q'}{\xi_{\rm shell} \times (\langle w\gamma^2 v^2 \rangle_{\rm 3d} / w_{\infty})^2} \propto \frac{1}{(q/q_l)^{-n_l} + (q/q_l)^{-n_m} + (q_h/q_l)^{-n_m} (q/q_h)^{-n_h}}$$

$$\simeq \begin{cases} (q/q_l)^{n_l} & (q \ll q_l) \\ (q/q_l)^{n_m} & (q_l \ll q \ll q_h) \\ (q_h/q_l)^{n_m} (q/q_h)^{n_h} & (q_h \ll q) \end{cases}$$

## **Results**

**Amplitude** of the spectrum normalized by the kinetic energy measured in the simulation times the sound-shell width

A double power law

$$\begin{aligned} \frac{Q'}{\xi_{\text{shell}} \times (\langle w\gamma^2 v^2 \rangle_{3\text{d}} / w_{\infty})^2} & \propto \frac{1}{(q/q_l)^{-n_l} + (q/q_l)^{-n_m} + (q_h/q_l)^{-n_m} (q/q_h)^{-n_h}} \\ & \simeq \begin{cases} (q/q_l)^{n_l} & (q \ll q_l) \\ (q/q_l)^{n_m} & (q_l \ll q \ll q_h) \\ (q_h/q_l)^{n_m} (q/q_h)^{n_h} & (q_h \ll q) \end{cases} \end{aligned}$$

We also show that the amplitude of the spectrum is ( relatively) well parametrized by  $\kappa lpha$ 



**Amplitude** of the spectrum normalized by the kinetic energy measured in the simulation times the sound-shell width



$$\begin{aligned} \frac{Q'}{\xi_{\text{shell}} \times (\langle w\gamma^2 v^2 \rangle_{\text{3d}} / w_{\infty})^2} & \propto \frac{1}{(q/q_l)^{-n_l} + (q/q_l)^{-n_m} + (q_h/q_l)^{-n_m} (q/q_h)^{-n_h}} \\ & \simeq \begin{cases} (q/q_l)^{n_l} & (q \ll q_l) \\ (q/q_l)^{n_m} & (q_l \ll q \ll q_h) \\ (q_h/q_l)^{n_m} (q/q_h)^{n_h} & (q_h \ll q) \end{cases} \end{aligned}$$

## **Results**



## **Results**



# **Comparison to other works**

When we compare to simulations with the scalar field, we have found:

- Similar scaling
- IR peak shifted to lower freq. (Realistic nucleation)
- Factor ~ 2 in overall amplitude (More bubbles)

# **Comparison to other works**

When we compare to simulations with the scalar field, we have found:

- Similar scaling
- IR peak shifted to lower freq. (Realistic nucleation)
- Factor ~ 2 in overall amplitude (More bubbles)





New simulation scheme (free of scalar field scale) to calculate sound-shell contribution



Henrique Rubira

**Stay tuned** 

2002.11083, Domcke, Jinno and **Rubira** 

We have shown in 2002.11083 that temperature fluctuations in the line-of-sight can affect the GW spectrum



Henrique Rubira

**Stay tuned** 

2002.11083, Domcke, Jinno and **Rubira** 

We have shown in 2002.11083 that temperature fluctuations in the line-of-sight can affect the GW spectrum



What if the bubbles nucleate on top of a Universe with temperature fluctuations?

Jinno, Konstandin, **Rubira**, van de Vis (To appear)

Henrique Rubira

**Stay tuned** 

2002.11083, Domcke, Jinno and **Rubira** 

We have shown in 2002.11083 that temperature fluctuations in the line-of-sight can affect the GW spectrum





What if the bubbles nucleate on top of a Universe with temperature fluctuations?

Jinno, Konstandin, **Rubira**, van de Vis (To appear)

## **Thanks**





# Our set up

Now slowly and with more details...

A 5 steps calculation

Our set up





1) Run the 1d lattice simulation (spherical symmetry) for the given wall velocity and PT strength;

- 2) Nucleate bubbles and let them grow in a 3d lattice;
- 3) Calculating when each differential part of each bubble surface collide;
- 4) Construct a velocity grid embedding the 1d simulation;
- 5) Calculate GW from stress-energy tensor.

## The 1d simulation

#### 1d simulation



1) Run the 1d lattice simulation (spherical symmetry) for the given wall velocity and PT strength;



# The 1d simulation

#### 1d simulation



1) Run the 1d lattice simulation (spherical symmetry) for the given wall velocity and PT strength;

Initially higgs field sustain the profile. Scale invariant evolution (1004.4187)

Decays as 1/r respecting  $~~\partial_\mu T^{\mu
u} = 0~~$  (1905.00899)

# **The 1d simulation**

Given an alpha (vacuum/plasma)  $lpha_+\equiv rac{\epsilon}{a_+T_+^4} \; ,$ 

outside bubble 
$$v_+v_-$$

velocity inside and

Calculate fluid

Any information about microphysics (scalar potential) is encapsulated in alpha



By stress-energy conservation

$$\begin{array}{lll} \frac{dv}{d\tau} &=& 2vc_s^2(1-v^2)(1-\xi v) \ , \\ \frac{d\xi}{d\tau} &=& \xi[(\xi-v)^2-c_s^2(1-\xi v)^2] \ , \end{array}$$



1) Run the 1d lattice simulation (spherical symmetry) for the given wall velocity and PT strength;

#### <u>Initially higgs field sustain the profile. Scale invariant</u> <u>evolution (1004.4187)</u>

Decays as 1/r respecting  $\; \partial_\mu T^{\mu
u} = 0 \;$  (1905.00899)

#### 1d simulation

# The 1d simulation



incorporated as a boundary condition

#### 1*d* simulation



1) Run the 1d lattice simulation (spherical symmetry) for the given wall velocity and PT strength;

#### Initially higgs field sustain the profile. Scale invariant evolution (1004.4187)

Decays as 1/r respecting  $\ \partial_\mu T^{\mu
u} = 0$  (1905.00899)

# The 1d simulation

After collision: we remove Higgs energy injection and solve for the fluid system (with spherical sym)

$$\partial_{\mu}T^{\mu\nu} = 0$$



1) Run the 1d lattice simulation (spherical symmetry) for the given wall velocity and PT strength;

Initially higgs field sustain the profile. Scale invariant evolution (1004.4187)

Decays as 1/r respecting 
$$\partial_\mu T^{\mu
u}=0$$
 (1905.00899)

# The 1d simulation

 $\partial_t \begin{pmatrix} \rho \\ v \end{pmatrix} + A \ \partial_r \begin{pmatrix} \rho \\ v \end{pmatrix} + h = 0,$ 

$$T_{\mu\nu} = w u_{\mu} u_{\nu} + p g_{\mu\nu}$$

$$w = \rho + p$$

5

### 1*d* simulation



Need to solve shock fronts! Intricate discretization scheme called Kurganov-Tadmor

 $A = \frac{1}{1 - c_s^2 v^2} \begin{pmatrix} (1 - c_s^2)v & \rho + p \\ \frac{c_s^2 (1 - v^2)^2}{\rho + p} & (1 - c_s^2)v \end{pmatrix} \qquad h = \frac{d - 1}{r} \begin{pmatrix} \frac{(\rho + p)v}{1 - c_s^2 v^2} \\ -\frac{c_s^2 v^2 (1 - v^2)}{\rho + p} \end{pmatrix}$ 



1) Run the 1d lattice simulation (spherical symmetry) for the given wall velocity and PT strength;

Initially higgs field sustain the profile. Scale invariant evolution (1004.4187)

Decays as 1/r respecting  $\partial_{\mu}T^{\mu\nu} = 0$  (1905.00899)

# The 1d simulation

A detail for those that like numerical schemes

If one try to solve the shocks with a standard numerical schemes, it wont work (see Appendix A)



# The 1d simulation

## The first collision



Our set up





1) Run the 1d lattice simulation (spherical symmetry) for the given wall velocity and PT strength;

2) Nucleate bubbles and let them grow in a 3d lattice;



Nucleation rate per volume parameterized by beta

Our set up





1) Run the 1d lattice simulation (spherical symmetry) for the given wall velocity and PT strength;

2) Nucleate bubbles and let them grow in a 3d lattice;

3) Calculating when each differential part of each bubble surface collide;



$$\begin{split} \frac{\Delta w}{w_0} &\simeq \sum_{i: \text{bubbles}} \frac{\Delta w^{(i)}}{w_0}, \qquad \vec{v} \simeq \sum_{i: \text{bubbles}} \vec{v}^{(i)}, \\ &\frac{\Delta w^{(i)}}{w_0}(t, \vec{x}) \simeq \frac{\Delta w^{(1d)}}{w_0} \\ &\vec{v}^{(i)}(t, \vec{x}) \simeq \hat{n}^{(i)} v^{(1d)} \end{split}$$

1) Run the 1d lattice simulation (spherical symmetry) for the given wall velocity and PT strength;

2) Nucleate bubbles and let them grow in a 3d lattice;

3) Calculating when each differential part of each bubble surface collide;

4) Construct a velocity grid embedding the 1d simulation;

### Henrique Rubira

Our set up

# Our set up

$$T^{ij}(\vec{x}) = v^i(\vec{x})v^j(\vec{x})\rho(\vec{x})$$
$$T_+(\vec{k}) = \sum_{i,j} \frac{T^{ij}(\vec{k})}{\sqrt{2}} \left(\theta_i(\vec{k})\theta_j(\vec{k}) - \phi_i(\vec{k})\phi_j(\vec{k})\right),$$
$$T_\times(\vec{k}) = \sum_{i,j} \frac{T^{ij}(\vec{k})}{\sqrt{2}} \left(\theta_i(\vec{k})\phi_j(\vec{k}) + \theta_i(\vec{k})\phi_j(\vec{k})\right)$$

$$T_{+,\times}(q,\vec{k},t) = \sum_{t'=t_{\text{init}}}^{t} e^{iqt'} T_{+,\times}(t',\vec{k}),$$

$$\Omega(q,t) = C q^3 \langle T_+ T_+^* + T_\times T_\times^* \rangle |_{|\vec{k}|=q}$$



1) Run the 1d lattice simulation (spherical symmetry) for the given wall velocity and PT strength;

2) Nucleate bubbles and let them grow in a 3d lattice;

3) Calculating when each differential part of each bubble surface collide;

4) Construct a velocity grid embedding the 1d simulation;

5) Calculate GW from stress-energy tensor.

# **Results detailed**

How to parametrize the spectrum?

Integrated spectrum gives better parameter dependence

$$Q'_{\rm int} \equiv \int d\ln q \ Q'(q) \,,$$

We expect the GW spectrum to be proportional to something like

Q'

Find some quantity that resembles it



## **Results detailed**

How to parametrize the spectrum?

Integrated spectrum gives better parameter dependence

$$Q'_{\rm int} \equiv \int d\ln q \ Q'(q) \,,$$

We expect the GW spectrum to be proportional to something like

 $Q' \propto \left( \langle w \gamma^2 v^2 \rangle / w_{\infty} \rangle^2 \right)^2$  Find some quantity that resembles it

# **Results detailed**

How to parametrize the spectrum?

Integrated spectrum gives better parameter dependence

$$Q'_{\rm int} \equiv \int d\ln q \ Q'(q) \,,$$

We expect the GW spectrum to be proportional to something like

Q'

Find some quantity that resembles it





### Pretty good normalization!

$$Q'_{\rm int} \simeq 9 \times \xi_{\rm shell} \times (\langle w \gamma^2 v^2 \rangle_{\rm 3d} / w_{\infty})^2$$

Problem: not user-friendly (needs 3d simulations)

1st attempt  $\langle w\gamma^2v^2
angle_{
m 3d}$ 2nd attempt  $\langle w\gamma^2v^2
angle_{
m 1d}$ 

## How to parametrize the spectrum?

Integrated spectrum gives better parameter dependence

**Results detailed** 

$$Q'_{\rm int} \equiv \int d\ln q \ Q'(q) \,,$$

We expect the GW spectrum to be proportional to something like

 $Q' \propto \left( \langle w \gamma^2 v^2 \rangle / w_{\infty} \rangle^2 \right)^{\text{Find some}}$  quantity that resembles it

# **Results detailed**

How to parametrize the spectrum?

Integrated spectrum gives better parameter dependence

$$Q'_{\rm int} \equiv \int d\ln q \ Q'(q) \,,$$

We expect the GW spectrum to be proportional to something like

Q'

Find some quantity that resembles it 1st attempt  $\langle w\gamma^2v^2
angle_{
m 3d}$ 2nd attempt  $\langle w\gamma^2v^2
angle_{
m 1d}$ 



## good normalization!

$$Q'_{\rm int} \simeq 12 \times \xi_{\rm shell} \times (\langle w \gamma^2 v^2 \rangle_{\rm 1d} / w_{\infty})^2$$

Problem: not user-friendly (needs 1d simulations)

# **Results detailed**

How to parametrize the spectrum?

1st attempt  $\langle w\gamma^2v^2
angle_{
m 3d}$ 2nd attempt  $\langle w\gamma^2v^2
angle_{
m 1d}$ 3rd attempt  $\kappa \alpha = \frac{4}{\xi_w^3 w_\infty} \int d\xi \ w \gamma^2 v^2 \xi^2$ , Very user friendly!

Integrated spectrum gives better parameter dependence

$$Q'_{\rm int} \equiv \int d\ln q \ Q'(q) \,,$$

We expect the GW spectrum to be proportional to something like

 $Q' \propto \left( \langle w \gamma^2 v^2 \rangle / w_{\infty} \rangle^2 \right)^2$  Find some quantity that resembles it

# **Results detailed**

How to parametrize the spectrum?

Integrated spectrum gives better parameter dependence

$$Q'_{\rm int} \equiv \int d\ln q \ Q'(q) \,,$$

We expect the GW spectrum to be proportional to something like

 $Q' \propto \left( \langle w\gamma^2 v^2 \rangle / w_\infty )^2 \right)$ 

Find some quantity that resembles it



# **Results detailed**

How to parametrize the spectrum?

Integrated spectrum gives better parameter dependence

$$Q'_{\rm int} \equiv \int d\ln q \ Q'(q) \,,$$

We expect the GW spectrum to be proportional to something like

 $Q' \propto \left( \langle w\gamma^2 v^2 \rangle / w_\infty \rangle^2 \right)$ 

Find some quantity that resembles it 1st attempt  $\langle w\gamma^2 v^2 \rangle_{3d}$ 2nd attempt  $\langle w\gamma^2 v^2 \rangle_{1d}$ 3rd attempt  $\kappa \alpha = \frac{4}{\xi_w^3 w_\infty} \int d\xi \ w\gamma^2 v^2 \xi^2$ , We can also relate  $\kappa \alpha$  to  $\langle w\gamma^2 v^2 \rangle_{1d}$ pretty easily

