CONSTRAINING LV GRAVITY WITH GW OBSERVATIONS

MARIO HERRERO-VALEA SISSA & INFN & IFPU

ERC-2018-COG GRAMS 815673

Based on works with

Enrico Barausse, Diego Blas, Neil Cornish , Nicola Franchini, Toral Gupta, Kent Yagi, Nicolás Yunes 2104.04596 2103.00929

-WHY?

-HOW?

-WHAT?

-WHY?

-HOW?

-WHAT?

We consider LV Gravity.

We constrain its parameter space

Is the theory left over

Why not?

Precision tests in the matter sector Gravitational physics is mostly tested in the non-relativistic limit (Local tests in the solar system, large scale cosmology)

Is Nature really Lorentz invariant?

Why not?

Precision tests in the matter sector Gravitational physics is mostly tested in the non-relativistic limit (Local tests in the solar system, large scale cosmology)

Quantum Gravity

Is Nature really Lorentz invariant?

Hořava Gravity

Renormalizable (at least in some cases) Can provide a UV completion for GR Formulated as a standard field theory

- **Einstein-Aether Gravity** EFT approach to Lorentz Violation in Gravity
- The vector U sets a universal preferred frame

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \left(-R\right)$$

$$K^{\alpha\beta}_{\mu\nu} = c_1 g^{\alpha\beta} g_{\mu\nu} + c_2 \delta^{\alpha}_{\mu} \delta^{\beta}_{\nu} + c_3 \delta^{\alpha}_{\nu} \delta^{\beta}_{\mu} + c_4 U^{\alpha} U^{\beta} g_{\mu\nu}$$

 $g_{\mu
u}, U^{\mu}$

$$-K^{\alpha\beta}_{\mu\nu}\nabla_{\alpha}U^{\mu}\nabla_{\beta}U^{\nu}-\lambda(U^{\mu}U_{\mu}-1)\Big)$$

Jacobson & Mattingly, 2000

Einstein-Aether Gravity Three propagating modes

 $g_{\mu
u}$, U^{μ}

$$c_T^2 = \frac{1}{(1 - c_1 - c_3)}$$

$$c_{S}^{2} = \frac{c_{1} + c_{2} + c_{3}}{c_{1} + c_{4}} \frac{2 - c_{1} - c_{4}}{2(1 + c_{2})^{2} - (c_{1} + c_{2} + c_{3})(1 + c_{1} + 2c_{2} + c_{3})}$$

$$c_V^2 = \frac{c_1^2 - \frac{c_1^2}{2} + \frac{c_3^2}{2}}{(c_1 + c_4)(1 - c_1 - c_3)}$$

 $c_1 + c_3 = 0$ - GW propagate at c=1 - Solar system tests - The limit of HG $C_{\omega} \to \infty$

Einstein-Aether Gravity Three propagating modes

 $g_{\mu
u}$, U^{μ}

 $c_1 - c_3 = c_0, 3c_2 = c_{\theta} \leq \mathcal{O}(1)$

Foster & Jacobson, 2006 Bonetti & Barausse, 2015 Muller, Williams & Turyshev, 2008 Will, 2006 Carrol & Lim, 2004 Abbott et al. 2017 Horava, 2009

We constrain its parameter space

-HOW?

-WHAT?

We consider LV Gravity.

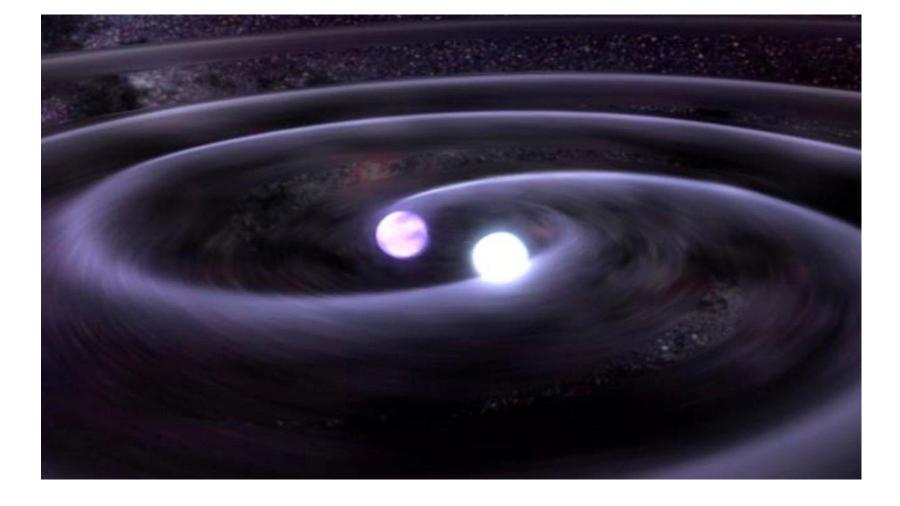
Is the theory left over

- Violations of the strong equivalence principle
 - In modified theories of Gravity, compact objects do not move on geodesics of the metric In the point particle approximation this is parametrised by sensitivities

$$S = -\int d\tau m(\gamma), m(\gamma) = m_0 [1 + \sigma(1 - \gamma) + \cdots], \qquad \sigma = \frac{d \log m(\gamma)}{d \log \gamma}|_{\gamma=1}$$

 $\gamma = u \cdot U = F(c_i)$

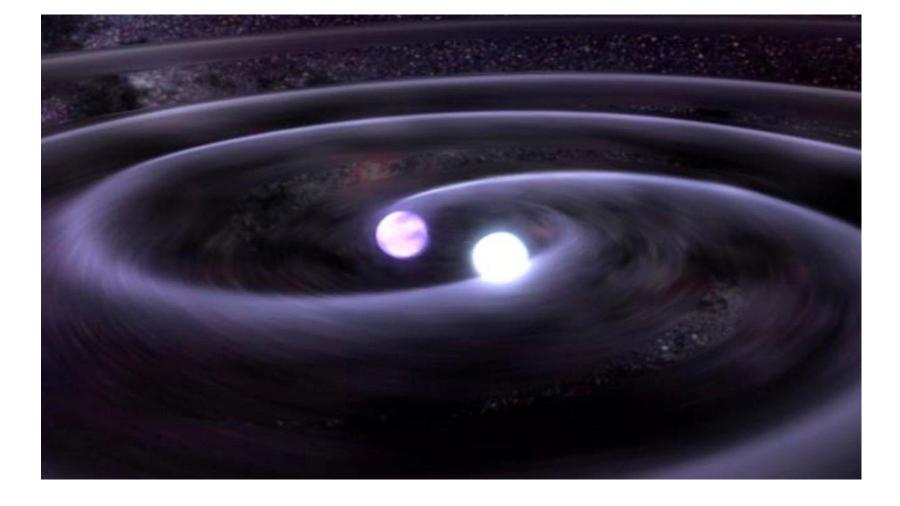
The sensitivities also control the emission of gravitational waves in binary systems of compact objects i.e. binary pulsars



-As pulsars move the period of the orbit change due to emission of GW

$$\begin{aligned} \frac{\dot{E}_b}{E_b} &= 2 \left\langle \left(\frac{\mathcal{G}_{12} G m_1 m_2}{r^3} \right) \left\{ \frac{32}{5} (\mathcal{A}_1 + \mathcal{S} \mathcal{A}_2 + \mathcal{S}^2 \mathcal{A}_3) v_{21}^2 \right. \\ &+ (s_1 - s_2)^2 \left[\mathcal{E} + 2 \mathcal{D} [w^2 - (\boldsymbol{w} \cdot \boldsymbol{n})^2] + \frac{18}{5} \mathcal{A}_3 w^2 + \left(\frac{6}{5} \mathcal{A}_3 + 36 \mathcal{B} \right) (\boldsymbol{w} \cdot \boldsymbol{n})^2 \right] \\ &- (s_1 - s_2) \frac{24}{5} (\mathcal{A}_2 + 2 \mathcal{S} \mathcal{A}_3) (\boldsymbol{w} \cdot \boldsymbol{v}_{21}) \right\} \right\rangle, \end{aligned}$$

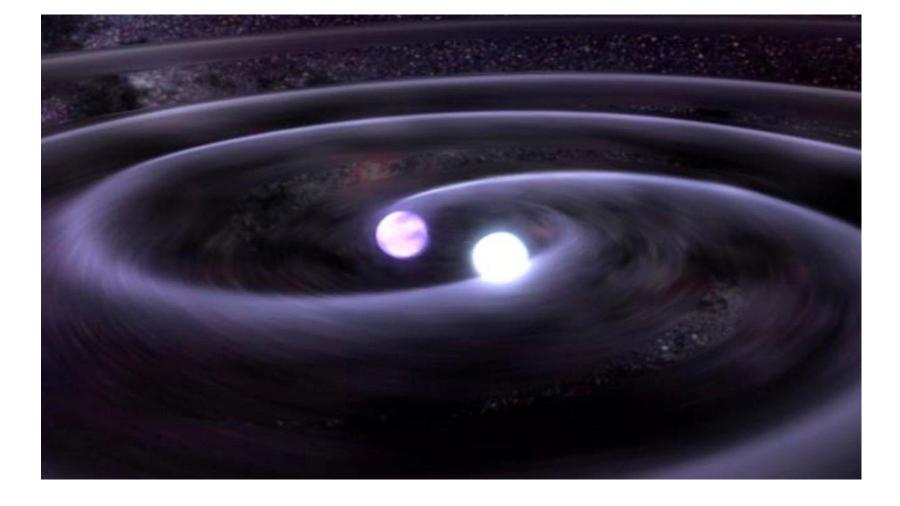
 $\frac{\dot{E}_b}{E_b}$



-As pulsars move the period of the orbit change due to emission of GW

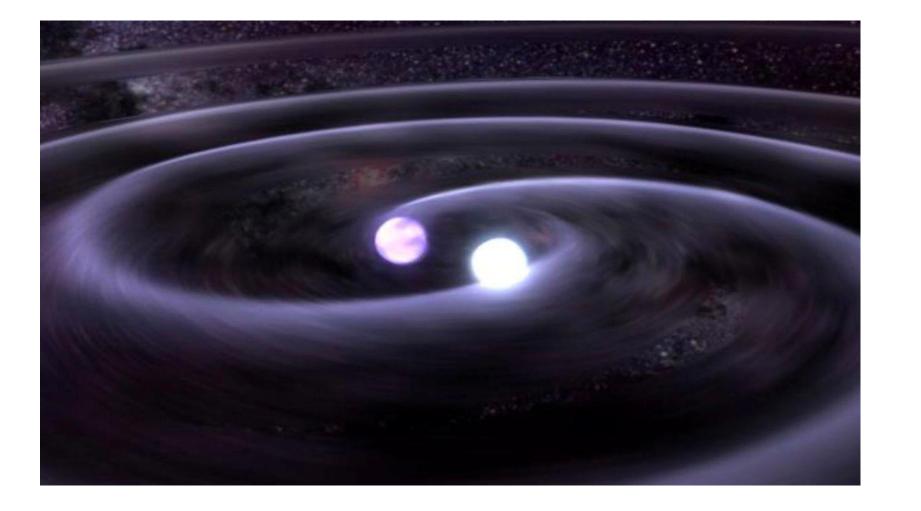
$$= 2 \left\langle \left(\frac{\mathcal{G}_{12}Gm_1m_2}{r^3} \right) \left\{ \frac{32}{5} (\mathcal{A}_1 + \mathcal{S}\mathcal{A}_2 + \mathcal{S}^2\mathcal{A}_3) v_{21}^2 \right. \\ \left. + \left(s_1 - s_2 \right)^2 \left[\mathcal{E} + (2\mathcal{D}[w^2 - (\boldsymbol{w} \cdot \boldsymbol{n})^2] + \frac{18}{5} \mathcal{A}_3 w^2 + \left(\frac{\boldsymbol{\theta}}{5} \mathcal{A}_3 + \boldsymbol{\theta} 6 \mathcal{B} \right) (\boldsymbol{w} \cdot \boldsymbol{n})^2 \right] \right. \\ \left. - \left(s_1 - s_2 \right) \frac{24}{5} (\mathcal{A}_2 + 2\mathcal{S}\mathcal{A}_3) (\boldsymbol{w} \cdot \boldsymbol{v}_{21}) \right\} \right\rangle,$$

 $\frac{\dot{E}_b}{E_b}$



-As pulsars move the period of the orbit change due to emission of GW

$$= 2\left\langle \left(\frac{\mathcal{G}_{12}Gm_1m_2}{r^3}\right) \left\{ \frac{\mathcal{Q}_{12}}{5} (\mathcal{A}_1 + \mathcal{S}\mathcal{A}_2 + \mathcal{S}^2\mathcal{A}_3) v_{21}^2 \right. \\ \left. + (s_1 - s_2)^2 \left[\mathcal{E} + 2\mathcal{D}[w^2 - (\boldsymbol{w} \cdot \boldsymbol{n})^2] + \frac{18}{5}\mathcal{A}_3 w^2 + \left(\frac{6}{5}\mathcal{A}_3 + 36\mathcal{B}\right) (\boldsymbol{w} \cdot \boldsymbol{n})^2 \right] \right. \\ \left. - (s_1 - s_2) \frac{24}{5} (\mathcal{A}_2 + 2\mathcal{S}\mathcal{A}_3) (\boldsymbol{w} \cdot \boldsymbol{v}_{21}) \right\} \right\rangle,$$



However, instead of the c_i couplings, we use a different parametrization

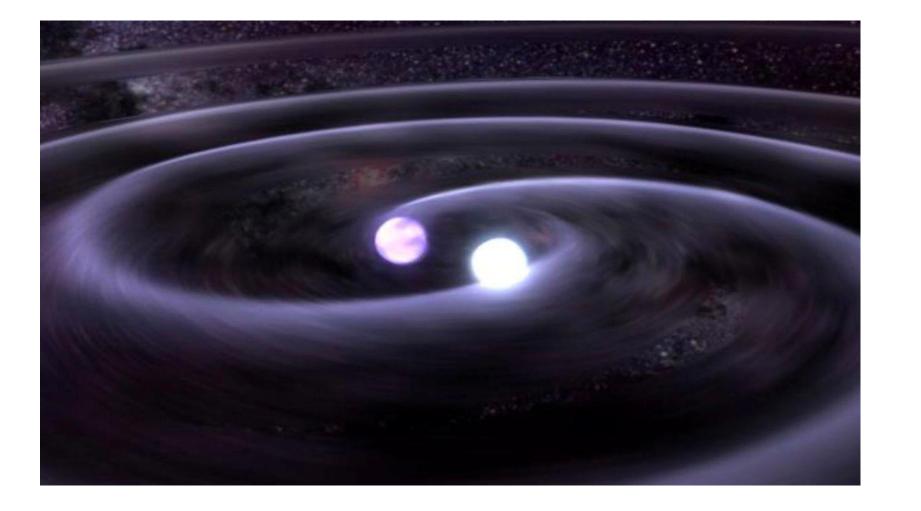
 $rac{\dot{E}_b}{E_b}$

 α_1, α_2

-As pulsars move the period of the orbit change due to emission of GW

$$= 2\left\langle \left(\frac{\mathcal{G}_{12}Gm_1m_2}{r^3}\right) \left\{ \frac{2}{5} (\mathcal{A}_1 + \mathcal{S}\mathcal{A}_2 + \mathcal{S}^2\mathcal{A}_3)v_{21}^2 + (s_1 - s_2)^2 \left[\mathcal{E} + 2\mathcal{D}[w^2 - (\boldsymbol{w}\cdot\boldsymbol{n})^2] + \frac{18}{5}\mathcal{A}_3 w^2 + \left(\frac{6}{5}\mathcal{A}_3 + 36\mathcal{B}\right)(\boldsymbol{w}\cdot\boldsymbol{n})^2 \right] - (s_1 - s_2) \frac{24}{5} (\mathcal{A}_2 + 2\mathcal{S}\mathcal{A}_3)(\boldsymbol{w}\cdot\boldsymbol{v}_{21}) \right\} \right\rangle,$$

,
$$c_{\omega}$$
, c_{σ}



However, instead of the c_i couplings, we use a different parametrization

 $\frac{\dot{E}_b}{E_b}$

 α_1, α_2

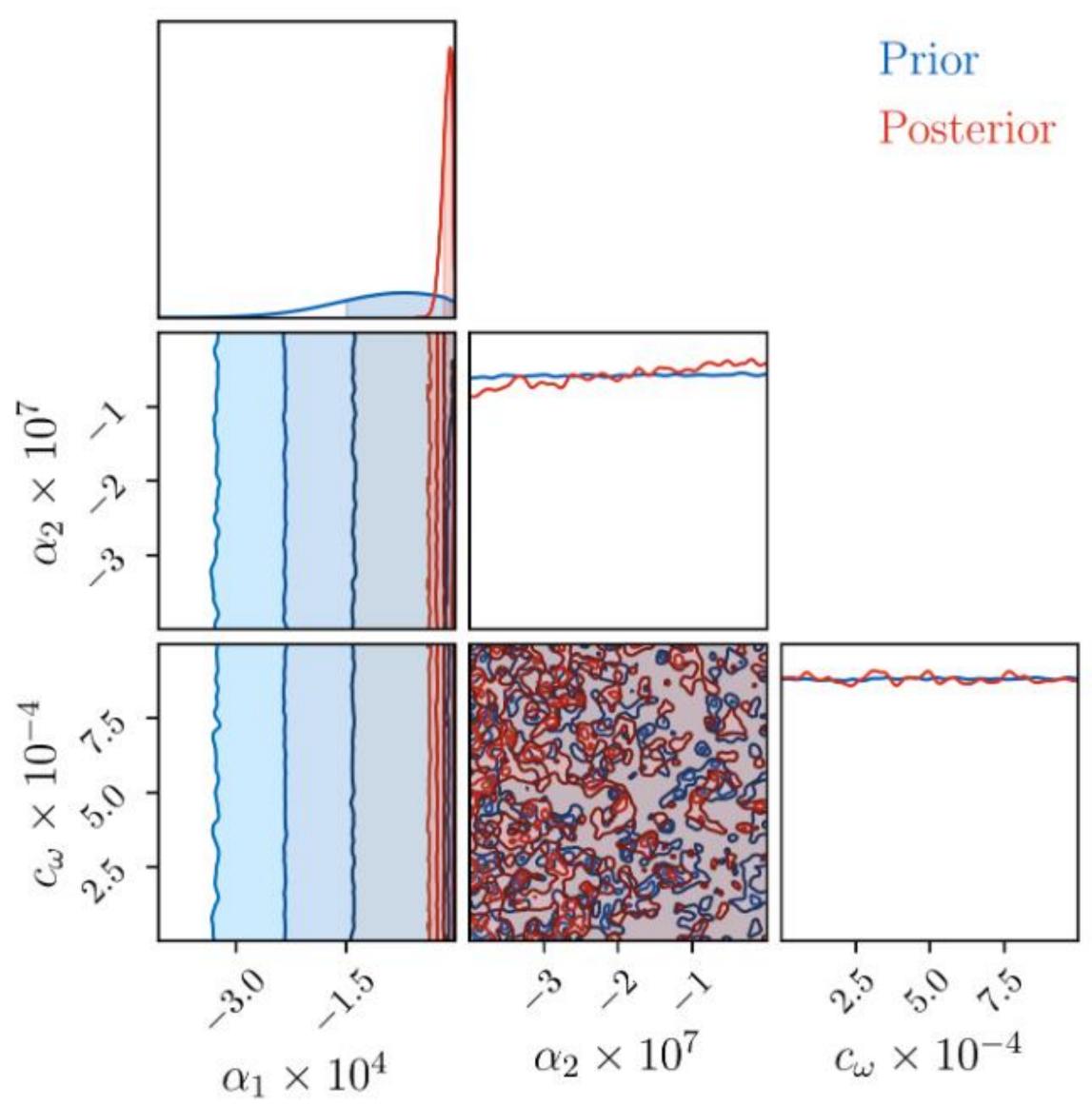
-As pulsars move the period of the orbit change due to emission of GW

$$= 2\left\langle \left(\frac{\mathcal{G}_{12}Gm_1m_2}{r^3}\right) \left\{ \frac{2}{5} (\mathcal{A}_1 + \mathcal{S}\mathcal{A}_2 + \mathcal{S}^2\mathcal{A}_3)v_{21}^2 + (s_1 - s_2)^2 \left[\mathcal{E} + 2\mathcal{D}[w^2 - (\boldsymbol{w} \cdot \boldsymbol{n})^2] + \frac{18}{5}\mathcal{A}_3 w^2 + \left(\frac{6}{5}\mathcal{A}_3 + 36\mathcal{B}\right)(\boldsymbol{w} \cdot \boldsymbol{n})^2 \right] - (s_1 - s_2) \frac{24}{5} (\mathcal{A}_2 + 2\mathcal{S}\mathcal{A}_3)(\boldsymbol{w} \cdot \boldsymbol{v}_{21}) \right\} \right\rangle,$$

,
$$c_{\omega}$$
, c_{δ}

Pulsar System	$m_1(M_{\odot})$	$m_2(M_{\odot})$	P_b (days)	$\dot{P_b}^{ m obs}$
PSR J1738+0333[35]	$1.46^{+0.06}_{-0.05}$	$0.181\substack{+0.008 \\ -0.007}$	0.3547907398724(13)	$-25.9(3.2) \times 10^{-15}$
PSR J0348+0432 [6]	2.01(4)	0.172(3)	0.102424062722(7)	$-0.273(45) \times 10^{-12}$
PSR J1012+5307 [21] [51]	1.64(0.22)	0.16(0.02)	0.60467272355(3)	$-1.5(1.5) \times 10^{-14}$
PSR J0737-3039 [50]	1.3381(7)	1.2489(7)	0.10225256248(5)	$-1.252(17) \times 10^{-12}$

+ triple system PSR J0337+1715



-HOW?

-WHAT?

We consider LV Gravity.

We constrain its parameter space

Is the theory left over

WHAT is left is a version of Horava Gravity

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \left(-R - \lambda \nabla_{\!\mu} U^{\mu} \nabla_{\!\nu} U^{\nu} - \alpha (U^{\mu} U_{\mu} - 1)\right)$$

- Minimal Horava Gravity (mHG) Only one coupling left (λ -theory)
- U is hypersurface orthogonal

- Cosmological dynamics is different from GR
- Constraint analysis shows that the theory is in general different (but there were claims based on asympotic flatness)
- The scalar mode is strongly coupled (not a problem)

Loll & Pires, 2014 Belllorin & Restuccia, 2012 Henneaux & Kleindschmidt, 2010

WHAT is left is a version of Horava Gravity

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} \left(-R - \lambda \nabla_{\!\mu} U^{\mu} \nabla_{\!\nu} U^{\nu} - \alpha (U^{\mu} U_{\mu} - 1)\right)$$

- Minimal Horava Gravity (mHG) Only one coupling left (λ -theory)
- U is hypersurface orthogonal

- Quasinormal modes are independent of λ
 - Spherical collapse is independent of λ
- (non-rotating) Black holes are Schwarzschild (although they allow for extra couplings with U)

<u>CONCLUSIONS</u>

- Lorentz violating Gravity is a possible option for modifying GR
- The parameter space of the theory at low energies is constrained
- A version of Horava Gravity survived and remains possible
- Further constraints seem to require exploring higher energies

<u>CONCLUSIONS</u>

- Lorentz violating Gravity is a possible option for modifying GR
- The parameter space of the theory at low energies is constrained
- A version of Horava Gravity survived and remains possible
- Further constraints seem to require exploring higher energies

