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Outline

• Interferometers network in  O3 data taking
•  Gravitational Wave Transient Catalog 2 (GWTC-2) and test of  general relativity with GWTC-2
• O3 data taking: GW exceptional events 
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O3 observing run

Three observing runs have happened to date: 
O1: 12 Sep 2015 -20 Oct 2015 
O2: 30 Nov 2016 - Aug 25th 
O3a: 1 Apr  2019  - 1 Oct 2019 
O3b: 1 Nov 2019  - 27 Mar 2020 
    O3b data taking ended due to the impact of COVID-19 

Duty cycle of the interferometer 
network

https://www.virgo-gw.eu/status.html

The sensitivity, quantified by Binary neutron star inspiral range for first phase of O3 (O3a)

• Hanford: 108 Mpc
• Livigstone 135 Mpc 
• Virgo: 45 Mpc 
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 Gravitational-wave Transient Catalog-2

● GWTC-1 (Physical review X 9, 031040, 2019): 
11 confident detections during 01 and O2

● GWTC-2 (Phys. Rev. X 11, 021053, 2021) :
39 confident detections during O3a 

Compact binaries coalescence:
● O1-O2: detection ~every few months 
● O3: detection ~weekly 

LIGO-G2001862

The detection of 39 candidate events in 26 weeks  is  consistent 
with GWTC-1,  given the increased sensitivity of Advanced LIGO 
and Advanced Virgo
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 Gravitational-wave Transient Catalog-2
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Credible region contours for all candidate events in the plane of total 
mass M and mass ratio q

● reported 39 candidate GW imposing false alarm rate less than 2 per years (expected contamination 
fraction less than 10%)

● 4  search pipelines: 3 template searches, 1 unmodeled search

● Total masses of BBH system from 14M
⊙

 for 
GW190924_021846 to 150M

⊙
 for GW190521

● This catalog  includes binary systems with 
significantly asymmetric mass ratios

● 11 of the 39 events detected have positive 
effective inspiral spins under our default prior 
(at 90% credibility), while none exhibit 
negative effective inspiral spin. 

 Gravitational-wave Transient Catalog-2
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Testing general relativity
Phys. Rev D. 103, 122002 (2021)

● Residuals from best-fit waveforms consistent with detector 

noise 
● Consistency of parameters inferred from inspiral and 

ringdown phases of the signal

Tests of general relativity in the highly dynamical and strong-field regime:
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Testing general relativity

● Residuals from best-fit waveforms consistent with detector 

noise 
● Consistency of parameters inferred from inspiral and 

ringdown phases of the signal
● Measured PN coefficients consistency with GR 
● Consistency with no dispersion of GWs and massless 

graviton
● Ringdown frequencies and damping times consistent with GR
● No detection of echoes
● No evidence for pure scalar or pure vector polarisations

Tests of general relativity in the highly dynamical and strong-field regime:
Phys. Rev D. 103, 122002 (2021)
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• First GW signal observed due to coalescences of two BHs with 
asymmetric masses of   30.1+4.6

−5.3 
M

⊙
 and   8.3+1.6

−0.9
 M

⊙
 black.

• Mass ratio q= 0.28+0.12
−0.07

  (median and 90% confidence intervals)

• Asymmetric systems are predicted to emit gravitational waves with 
stronger contributions from higher multipoles

• third BH binary identified with at least one non zero spin 
component,

 ,  
small value (<0.1)

 
of precessing spin parameter Χ

p  
 

disfavored

O3 exceptional events: GW190412

Mass-ratio measurement of GW190412  is robust 
against modeling systematic

Phys. Rev. D 102, 043015 (2020)
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Higher multipoles:

• Many different statistical tests, all support existence of 
higher multipoles

• Time-frequency track methods: GW instantaneous 
frequency f

ml
(t) is related to the dominant mode one:

 f
ml

(t)= (m/2)f
22

 (t)

• search of “secondary” track in the time frequency 
representation, looking to the energy along each track   
f
α
(t)

O3 exceptional events: GW190412
Phys. Rev. D 102, 043015 (2020)
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• Livingstone-Hanford-Virgo observation with SNR of 25 
• Masses in the range respectively:  22.2- 24.3 M

 ⊙
and 

2.50- 2.67M
⊙

•  secondary component is either the lightest black hole or 
the heaviest neutron star ever discovered in a double 
compact-object system

• mass ratio of q  = 0.112+0.008
 -0.009 

(most unequal ever 
observed with GW)

• no electromagnetic counterpart 

• Tests of general relativity reveal no measurable deviations from the theory
• prediction of higher-multipole emission is confirmed at high confidence
• Comparisons between the secondary mass and estimates of the maximum NS mass suggest

that  this signal is unlikely to originate in a NSBH coalescence.
 

Astrophys. J. Lett. 896, L44 (2020)

O3 exceptional events: GW190814
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• component masses range from 1.12  to 2.52 M
⊙

 , consistent with 
the individual binary components being neutron stars.

•  the total mass is significantly larger than those of known binary 
BNS system (5σ from mean of Galactic BNS)

• The possibility that one or both binary components  are black 
holes cannot be ruled out

Astrophys. J. Lett. 892, L3 (2020)

● compact binary coalescence observed by LIGO 
Livingstone only, SNR 12.9

● Both components have masses less than 3 M
⊙

● no clear detection of a counterpart has been 
reported (broad sky position region)

O3 exceptional events: GW190425
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First clear detection of “intermediate mass” black hole
● short duration (few observable cycles) GW, three-detector network SNR: of 14.7
● estimated false-alarm rate of 1 in 4900 yr using cWB (indipendent model search) and of 1 in 829y and 1 in 0.94y by 

template searches GstLAL and PyCBC 
● BH masses of 85+21

−14 
M  ⊙  and 66+17

−18
 M

⊙
  (heavier in PISN mass gap)

● BH remnant mass 142+28
−16

  M
⊙

  (direct observation of formation of a IMBH ) 

O3 exceptional events: GW190521
 Phys. Rev. Lett. 125, 101102 (2020)
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 GW190521

● Posterior distribution for  remnant BH mass shows no support 
below 100M

⊙

● Weak evidence for spinning BBH and precessing orbital plane 
obtained performing  bayesian model selection including models 
omitting precession and spins

● No evidence for higher order modes

The possible formation of black holes in the pair-instability 
mass gap
● the formation from stellar collapse
● the primary BH might be the result of the merger of two 

smaller BHs (hierarchical scenario), or of two massive stars 
● formation  via isolated binary evolution appears disfavored.
● it is  unlikely  that GW190521 is  a  strongly  lensed  signal  

of  a  lower-mass  black  hole  binary merger. 

 Phys. Rev. Lett. 125, 101102 (2020)

 Astrophys. J. Lett. 900, L13 (2020)
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 GW200105 and GW200115

● First detections of neutron star-black hole systems: 
GW200105 and GW200115

● GW200105 is a single-detector event (observed in 
LIGO Livingston) with an SNR of 13.9. (statistical 
confidence difficult to establish)

●  GW200115 SNR of 11.6 and FAR of < 1/(1x105  yr).

● Component mass:
GW200105:  8.9+1.2

-1.5 
M

 ⊙
and 1.9+0.2

-0.3 
M

⊙
 
 
 

GW200115:  5.7+1.8
-2.1 

M
 ⊙
and 1.5+0.7

-0.3 
M

⊙
 
 
 

● GW200115: preference for spin to be anti-aligned with 
orbital angular momentum

● No EM counterpart observed (as expected)

ApJ Letters 915, L5 (2021)
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Conclusions

• GWCT-2:  39 GW  detections  due to compact binaries coalescences, from the analysis of the  

O3a data taking analysis
• For the first time, binary systems with significantly asymmetric mass ratios, BHNS systems and 

intermediate mass BHs have been reported
• Further investigations and results :

➔ “Population properties of compact objects from the second LIGO-Virgo Gravitational-Wave 

Transient Catalog” ,   ApJ Letters 913, L7 (2021)
➔ “Properties and astrophysical implications of the 150 Msun binary black hole merger 

GW190521”,   Astrophys. J. Lett. 900, L13 (2020)
➔ “O3a Search for Intermediate Mass Black Hole Binaries”, arxiv:2105.15120

This material is based upon work supported by NSF’s LIGO Laboratory 
which is a major facility fully funded by the National Science Foundation.
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Back up
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 GW190521
 Phys. Rev. Lett. 125, 101102 (2020)

• Effective inspiral spin parameters χ
eff 

(spin components 
aligned with the orbital angular momentum) is estimated 
to be 0.08+0.27

−0.36
  and effective precession spin 

parameters χ
p
 
 
 to be 0.68+0.25

−0.37
• Weak evidence for spinning BBH and precessing orbital 

plane obtained performing  bayesian model selection 
including models omitting precession and spins

• No evidence for higher order modes
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 GW190521
 Phys. Rev. Lett. 125, 101102 (2020)

• Ringdown part of the signal has been analysed using a 
damped sinusoid mode; analysis estimates   f = 66+4

−3
Hz and 

damping time τ 19+9
−7m

s, inferring the final redshifted mass and 
dimensionless spin to be (1+z)M

f
 =252+63

−64
M  ⊙ and 

χ
f=
0.65+0.22

−0.48
• Results are consistent with the full-waveform analysis, the 

remnant ringdown signal is compatible with the full waveform 
analysis and GR 

Redshifted remnant mass and spin inferred from the 
least-damped mode. Blue: 90% credible region of the 
prediction from the full-waveform analysis.

Signal reconstructions are obtained through a templated analysis (LALinference) and two signal-agnostic analyses 
(CWB and BayesWave). Reconstructions are in agreement: overlap between the CWB point estimate  and the 
maximum-likelihood NRSur7dq4 template is 0.89,  overlap  between the median BayesWave waveform and the 
maximum likelihood NRSur7dq4 template is 0.93.
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Interferometers networks near future
Living Reviews in Relativity 23, 3 (2020)

2022 O4: four-detector network 

Late 2024/Early 2025 – 2026 O5:  O5 will begin with a four-
detector network incorporating the A+ upgrade for the aLIGO 
instruments and the AdV+ Phase 2 upgrade for Virgo. 

Hardware update (Frequency independent squeezing, 
newtonian noise subtraction, improved coatings) will allow 
improvement in spectral sensitivity (low and high frequency)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

