Measuring the dark matter environments of black hole binaries with gravitational waves

Adam Coogan (GRAPPA)

With Gianfranco Bertone, Daniele Gaggero, Bradley J. Kavanagh, and David A. Nichols

EPS-HEP, 26 July 2021

Dark dresses

- Intermediate-mass black holes could grow dense dark matter halos
- Gravitational waves signal dephased by halo's dynamical friction

Eg: Gondolo & Silk 9906391

Observational questions

Detectability: which dark dresses could LISA see?

Measurability: how well can parameters be measured?

Dark dress evolution

- Eda et al 1408.3534: non-evolving DM halo
- Kavanagh et al 2002.12811: cannot ignore halo evolution
- Numerical model: co-evolves DM phase-space distribution* with binary separation at Newtonian order

Model runtime: ~days / system

Instead: develop fast waveform model

* Spherically-symmetric, isotropic

Animation: Bradley Kavanagh

Effective density profile

Waveform model

Analysis

- Signal-to-noise ratio

Discoverability: can we distinguish from GR-in-vacuum?

Bayes factor

Measurability: how well can parameters be measured?

9

- Posterior over ($\gamma_s, \rho_6, \mathcal{M}, \log_{10} q$)

Initial halo slope & normalization

Discoverability

Astro: Eda et al 1408.3534 PBH: Adamek et al 1901.08528

 \star

Astro: Eda et al 1408.3534

Conclusions

- Developed **effective model** to study detection questions:
 - Dark dresses within ~100 Mpc are *detectable*
 - Can *discover* that fiducial systems are not GR-in-vacuum
 - Can *measure* DM density profile normalization, slope and even mass ratio
- First step: motivation to refine modeling and analysis

Thanks!