

Inclusive vector boson measurements at CMS

Louis Moureaux

On behalf of the CMS Collaboration cms-pag-conveners-smp@cern.ch

Introduction

1. W branching fractions [CMS-PAS-SMP-18-011]

- Precision measurement of W branching fractions to leptons and hadrons
- Test lepton universality
- Comparison to LEP results

2. Drell-Yan p_{T} over a wide mass range [CMS-PAS-SMP-20-003]

- Precision measurement of the transverse momentum of lepton pairs in Drell-Yan events, for different masses
- Test scale evolution of parton showers and NNLO, NNLL, ... predictions
- Probe transverse momentum-dependent parton distributions (TMD)
- 3. Drell-Yan p_{T} and rapidity in Z + 1 jet events [CMS-PAS-SMP-19-009]
- Test bench for NNLO Monte-Carlos

Use top quark production as a W factory:

Use top quark production as a W factory

Split in 30 categories based on decay mode and number of (b-tagged) jets:

Use top quark production as a W factory

Split in 30 categories based on decay mode and number of (b-tagged) jets

Further refine as a function of p_{τ} to separate $W \rightarrow \ell \nu$ from $W \rightarrow \tau (\rightarrow \ell \nu) \nu$:

[CMS-PAS-SMP-18-011]

Use top quark production as a W factory

Split in 30 categories based on decay mode and number of (b-tagged) jets

Further refine as a function of p_{τ} to separate $W \rightarrow \ell \nu$ from $W \rightarrow \tau (\rightarrow \ell \nu) \nu$

Fit the branching fractions in all categories simultaneously:

$$f_{ij}(\boldsymbol{\beta}) = \sum_{k \in signal} s_{ijk}(\boldsymbol{\beta}, \boldsymbol{\theta}) + \sum_{l \in bckgd} b_{ijl}(\boldsymbol{\theta})$$

Branching fractions
$$L(\boldsymbol{\beta}, \boldsymbol{\theta}) = \sum_{i \in channel} \sum_{j \in bins} \left[-y_{ij} \ln f_{ij}(\boldsymbol{\beta}, \boldsymbol{\theta}) + f_{ij}(\boldsymbol{\beta}, \boldsymbol{\theta}) \right] + \sum_{\boldsymbol{\theta} \in \boldsymbol{\theta}} \pi(\boldsymbol{\theta})$$

Observed yields

[CMS-PAS-SMP-18-011]

1. W branching fractions – Main results

7 CMS

- $Br(W \rightarrow ev)$ and $B(W \rightarrow \mu v)$ measured to O(1%)
- $Br(W \rightarrow \tau v)$ measured to O(2%)
- $Br(W \rightarrow h)$ measured to O(0.4%)
- More precise than LEP combination
- Consistent with lepton universality and the Standard Model

More results:

$R_{\mu/e}$	1.009(9)
R _{t/e}	0.994(21)
$R_{\tau/\mu}$	0.985(20)
R _{τ/ℓ}	1.002(19)

$\sum_{ij} V_{ij} ^2$	1.989(21)
V _{cs}	0.969(11)
$\alpha_{\rm s}(m_{\rm W})$	0.094(33)

2. Drell-Yan p_{τ} over a wide mass range

Predicting QCD initial-state radiation requires advanced theoretical tools:

 $p_{\tau}(\ell \ell)$ is sensitive to ISR through momentum conservation

How does it depend on the mass of the Z/γ^* ?

[CMS-PAS-SMP-20-003]

See I. Bubanja's poster for details

2. Drell-Yan p_{T} over a wide mass range

Five mass windows:

[CMS-PAS-SMP-20-003]

 $p_{T}(\ell \ell)$ distribution measured in each mass window

2. Drell-Yan p_{τ} over a wide mass range

Measurement unfolded to fiducial phase space

Compared to four predictions

MADGRAPH5_AMC@NLO	arTeMiDe
Monte-Carlo prediction	Analytical prediction
Baseline for LHC experiments	N ³ LL + NNLO TMD
Z + 0, 1, 2 partons merged at NLO	QED FSR by us, based on PYTHIA8
PYTHIA8 parton shower	Valid for $p_{\rm T} < 0.2 m_{\ell\ell}$
•	
CASCADE	Geneva
Monte-Carlo prediction	Monte-Carlo prediction
Parton Branching TMD	$NNLL_{\tau}' + NNLO$
Z + 0i or $Z + 1i$ at NLO,	PYTHIA8 parton shower
depending on distribution	
PYTHIA6 parton shower	
-	

2. Drell-Yan p_{T} over a wide mass range

- aMC@NLO does not describe the data at low $p_{\scriptscriptstyle T}$
- Predictions integrating TMDs provide a better description

[CMS-PAS-SMP-20-003]

2. Drell-Yan p_{τ} over a wide mass range

Also provided:

- Ratios with respect to Z peak region: probe evolution directly
- φ* distributions and ratios
- $p_{\tau}(\ell \ell)$ distributions and ratios for at least one jet (next slide)

[CMS-PAS-SMP-20-003]

At small and large p_{τ} , events with 2 jets dominate

[CMS-PAS-SMP-20-003]

NNLO or N_{partons} merging needed to obtain a complete description

3. Z rapidity in Z + (\geq 1) jet events

[CMS-PAS-SMP-19-009]

$e^+e^- \text{ or } \mu^+\mu^$ $p_{\tau}(\ell) > 25/24 \text{ GeV } [e/\mu]$ $|\eta(\ell)| < 2.4$ $71 < m(\ell\ell) < 111 \text{ GeV}$ $p_{\tau}(\text{jet}) > 30 \text{ GeV}$ |y(jet)| < 2.4

14

35.9 fb⁻¹ at 13 TeV

2016 data

See Q. Wang's presentation for more V + jets

Summary

The W and Z bosons are used for precision tests of the SM

In the electroweak sector: W branching fractions

- Measurement using top as a W factory
- Results support lepton flavor universality
- Precision competitive with LEP results

In QCD: Drell-Yan p_{τ} over a wide mass range

- Dilepton invariant mass from 50 to 1000 GeV
- Predictions using TMD PDF describe the data better at low $p_{T}(\ell \ell)$
- Z kinematics with at least one jet
- Single and double-differential measurements available

W branching fractions – More results

CCMS proved round from the provided in the pro