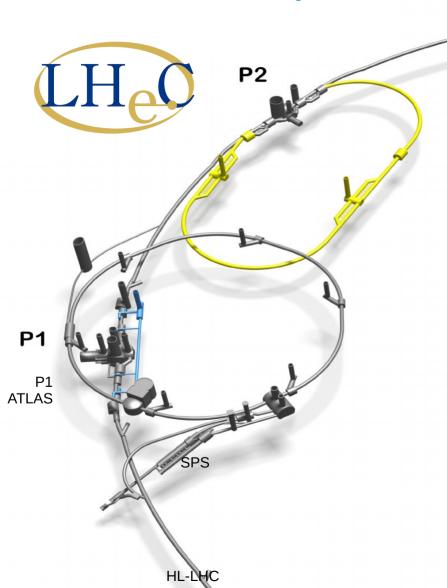
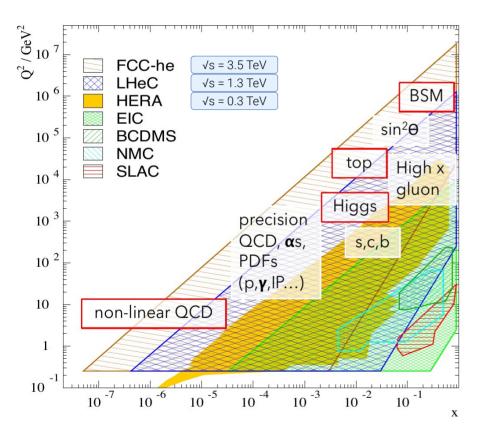
Electroweak physics at LHeC & FCC-eh and complementarity between LHeC and HL-LHC


D. Britzger for the LHeC & FCC-eh study group EPS-HEP 2021, Hamburg (virtual) 27.07.2021

Proposal for the 2030s – LHeC

LHeC - ep data in 2030s

- ERL electron ring attached to HL-LHC
- Similar concept than FCC-eh (but realisable much earlier)
- $E_e = 50 \text{ GeV}, L \sim 10^{34} \text{cm}^{-2} \text{s}^{-1}$


LHeC

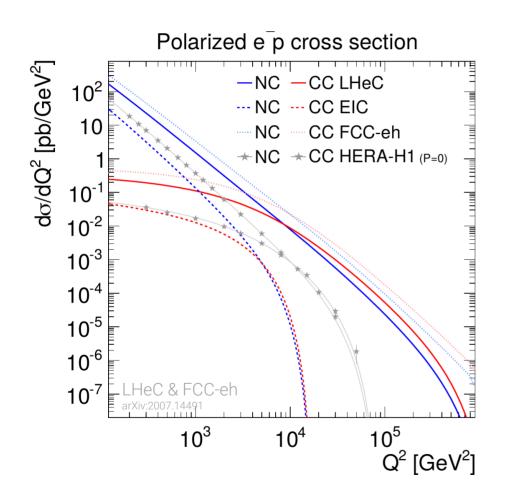
- √s ~ 1.3 TeV
- Electron and positron data
- Up to 1 ab-1 integrated luminosity
- Detector may possibly be shared with ALICE3/HI

Relocatable

 electron-accelerator components can be relocated from HL-LHC to FCC-hh → FCC-eh

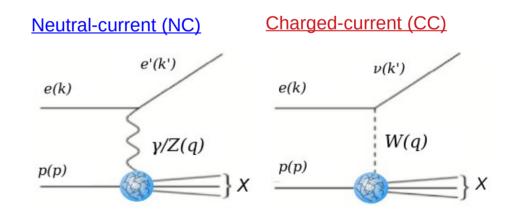
Kinematic plane – LHeC and FCC-eh

Rich physics program at all scales

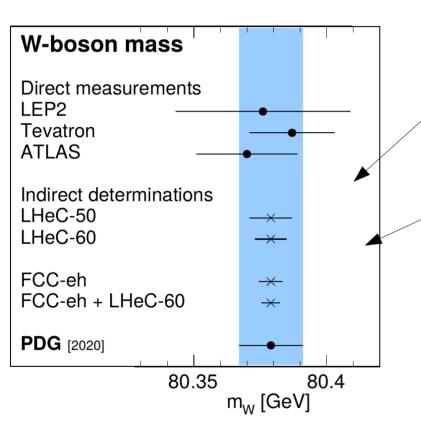

- Higgs physics in NC and CC DIS (talk by U. Klein)
- Top quark production (talk by S. Behera)
- BSM physics and searches (talk by O. Fischer)
- Precision QCD: proton structure, substructure, strong coupling constant, jet physics, heavy quarks, ... (talk by C. Gwenlan)
- Heavy ion programme (talk by G. Milhano)
- Electroweak physics

High luminosity

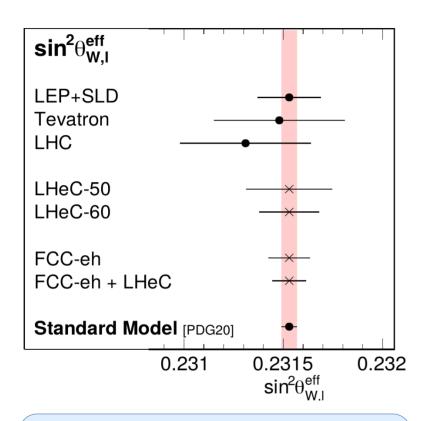
Intense electron beam from ERL (talk by B. Hounsell)


→ Status and plans (poster by K. Andre)

Electroweak physics in inclusive DIS


Future e*p DIS experiments (t-channel)

- neutral- and charged-current exchange
- measurements up to TeV scale and beyond
- Luminosity >1000 times higher than HERA
- CC: mediated by W-boson
- NC: Z-exchange important at high scales


Expectations: m_w + PDF

Determine W-boson mass together with proton-PDFs

- LHeC with L ~ 1ab-1
 - LHeC (E_e=50GeV): $\Delta m_W = \pm 8 \text{ MeV}$
 - LHeC (E_e =60GeV): $\Delta m_W = \pm 6$ MeV
- FCC-eh with L ~ 1ab-1 $\Delta m_{\rm W} = \pm 4.5$ MeV (includes PDF uncertainty of about ± 3.6 MeV)
 - FCC-eh + LHeC: $\Delta m_{\rm W}$ = \pm 3.6 MeV
- Indirect determination of m_w
- Complementary to 'direct' measurements
 - → Consistency test of EW Standard Model
- Smallest uncertainties from a single experiment

The weak mixing angle

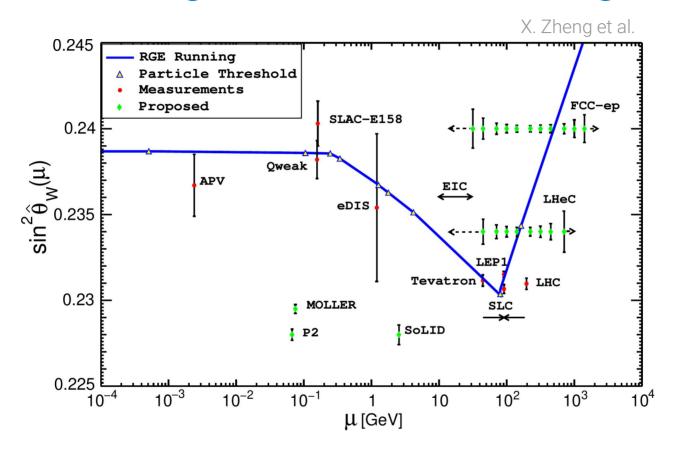
$$\Delta \sin^2 \theta_w$$
 (FCC-eh) = ±0.00011
= ±0.00010_(exp) ±0.00004_(PDF)

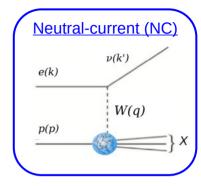
Weak mixing angle

sin²θ_w in neutral-current vector couplings (only)

$$g_V^f = \sqrt{\rho_{\text{NC},f}} \left(I_{\text{L},f}^3 - 2Q_f \, \kappa_f \, \sin^2 \theta_W \right)$$

$\sin^2\theta_w + PDF$ fit

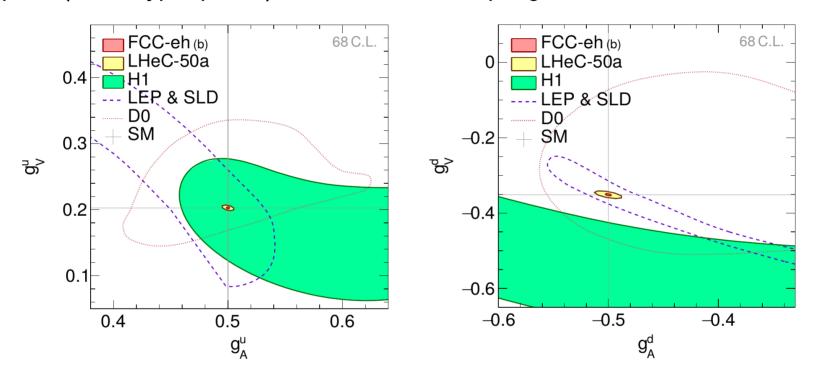

- Comparison to Z-pole data
- At future DIS facilities:
 Most precise single measurement possible
- Note: need theory to map $\sin^2\theta_W$ to effective leptonic weak mixing angle


```
\Delta \sin^2 \theta_w \text{ (LHeC-50)} = \pm 0.00021

\Delta \sin^2 \theta_w \text{ (LHeC-60)} = \pm 0.00015

\Delta \sin^2 \theta_w \text{ (FCC-eh+LHeC)} = \pm 0.000086
```

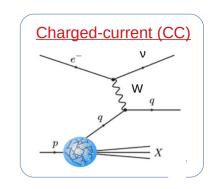
Running of the weak mixing angle

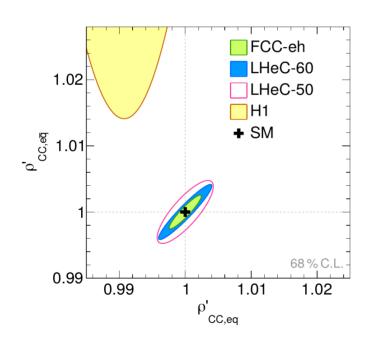


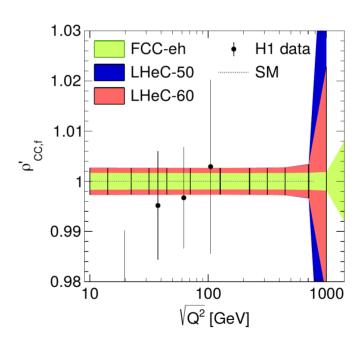
- Simultaneous determination of multiple values of sin²θ_w together with PDFs at different Q²
- Per mille uncertainties in 20 < Q < 2000 (700) GeV in spacelike regime
- Unique measurement of 'running' at high scales

Light quark NC couplings

Light quark (u- & d-type quarks) neutral-current couplings to the Z-boson




- LHeC already improves by more than an order of magnitude
- FCC-eh with per-mille precision
- u-type and d-type can be separated no sign ambiguity as in Z-pole data due to γZ terms


Charged current

Study charged current cross sections in DIS

$$W_{2}^{-} = x \left((\rho_{\text{CC},eq} \rho'_{\text{CC},eq})^{2} U + (\rho_{\text{CC},e\bar{q}} \rho'_{\text{CC},e\bar{q}})^{2} \overline{D} \right)$$

$$xW_{3}^{-} = x \left((\rho_{\text{CC},eq} \rho'_{\text{CC},eq})^{2} U - (\rho_{\text{CC},e\bar{q}} \rho'_{\text{CC},e\bar{q}})^{2} \overline{D} \right)$$

Charged current couplings not well studied experimentally – unique to DIS

(LHC) physics in the 30s

arXiv:1902.04070. arXiv:1902.00134 arXiv:1812.07831

CERN-LPCC-2018-03 December 23, 2019

J. Baglio 12, S. rter17, J. de Blas18,1

Q.-H. Cao^{28,29,30} . Chen35, T. Chen36

z-Martinez 41, M.

M. Deile11, F. ite⁵⁰, D. Dominguez

De Faria 53, G.

4. A. Gehrmann-De P. Gunnellini⁶⁹, C. M. Herndon 73. O.

S. Jahn 72, Sa.

. T. Kasemets 79, M.

Standard Model Physics at the HL-LHC and HE-LHC

Report from Working Group 1 on the Physics of the HL-LHC, and Perspectives at the HE-LHC

CERN-LPCC-2018-04 March 20, 2019

Higgs Physics at the HL-LHC and HE-LHC

Report from Working Group 2 on the Physics of the HL-LHC, and Perspectives at the HE-LHC

M. Cepeda^{1,2}, S. Gori³, P. Ilten⁴, M. Kado^{5,6,7}, F. Riva⁸

CERN-LPCC-2018-05 December 17, 2018

Beyond the Standard Model Physics at the HL-LHC and HE-LHC

Report from Working Group 3 on the Physics of the HL-LHC, and Perspectives at the HE-LHC

X. Cid Vidal¹, M. D'Onofrio², P. J. Fox³, R. Torre^{4,5}, K. A. Ulmer⁶,

Contributors:

A. Aboubrahim⁷, A. Albert⁸, I. Alimena⁹, B. C. Allanach¹⁰, M. Altakach¹¹, S. Amoroso¹²,
J. K. Anders¹³, J. Y. Araz¹⁴, A. Arbert¹⁵, P. Azz¹⁶, I. Babounikau¹⁷, M. J. Baker¹⁸, D. Barducci¹⁹,
O. Baron²⁰, L. Berranco Navarro²¹, A. Bay²², D. Bhatia²³, S. Biswas²⁴, D. Bloch²⁵, D. Bogavas²⁶,
C. Borschensky²⁷, M. K. Bugge⁸, D. Buttazzo²⁹, G. Cacciapaglia¹⁵, L. Cadamuro³⁰, A. Calandri¹³,
D. A. Camargo²⁹, A. Campa³, L. Carnimanis^{33,4}, S. Carrillo Montovy³⁵,
A. Carvalho Antunes De Oliveira³⁶, F. L. Castillo²¹, V. Cavaliera³⁷, D. Cavalli^{33,34}, C. Cecchi^{38,39},
A. Celis¹⁰, A. Cerri¹¹, G. S. Chahad^{12,38}, S. V. Chekanov¹⁴, H. J. Cheng¹⁵, J. T. Childers¹⁴,
M. Girelli¹⁶, O. Colegrow¹⁵, G. Corcella¹⁸, M. Corradi^{15,50}, M. J. Costaz¹, R. Cavarelli¹⁵,
N. P. Dang⁵², A. Deandrea⁵³, S. De Curtis⁵⁴, H. De la Torre⁵⁵, L. Delle Rose⁵⁶, D. Del Re^{49,57},
A. Demela^{33,34}, S. Demers³⁸, R. Dermisek⁵⁹, A. De Santo⁴¹, B. Deg⁶⁰, J. Donini⁶¹, A. K. Duncan⁶²,
V. Dutta³⁷, C. Escobar²¹, L. Fano^{38,39}, G. Ferretti⁶³, J. Fiasch⁶⁴, O. Fische⁵⁶, T. Flacke⁶⁶,
E. D. Frangipane^{77,68}, M. Frank¹⁴, G. Frattari^{49,50}, D. Frizzelf⁹, E. Fuchs⁵⁰, B. Fuks^{6,71},
E. Gabrielli¹², Y. Gao⁵, J. E. García Navarro²¹, M. H. Genesti¹, S. Giagy^{10,50}, G. F. Giudice⁴,
L. Gabr³³, M. Guerspitch¹⁵, G. Gougrafich⁷⁴, A. Grephican⁷, A. Guergifa⁷⁵, G. Curtunin⁶⁹, G. Guergifa⁷⁶, G. Guergifa⁷⁶, G. Guergifa⁷⁶, G. Guergifa⁷⁷, A. Guergifa⁷⁸, A. Grephican⁷⁸, A. Guergifa⁷⁸, G. Descanda⁷⁸, A. Grephican⁷⁸, A. Guergifa⁷⁸, G. Guergifa⁷⁸, G. Descanda⁷⁸, A. Grephican⁷⁸, A. Guergifa⁷⁸, G. Guergifa⁷⁸, G. Electropa G. Guergifa G. Guergi

EPPSU 2013

 "Europe's top priority should be the exploitation of the full potential of the LHC"

Complementary measurements

Supportive measurements

Competeing measurements

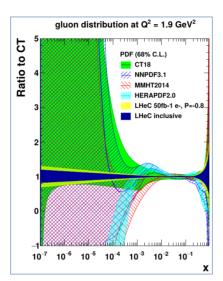
PDFs for phenomenology

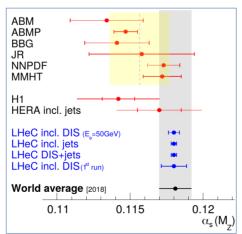
 LHeC 'supports' proton-proton programme through many different aspects

D. Britzger - EPS-HEP 2021

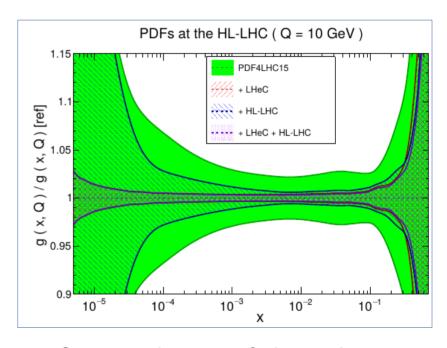
From the LHeC to the HL-LHC

SciPost Phys. 7 (2019) 4, 051 LHeC-CDR2020 [arXiv:2007.14497 See also talk by C. Gwenlan


PDFs at the LHeC

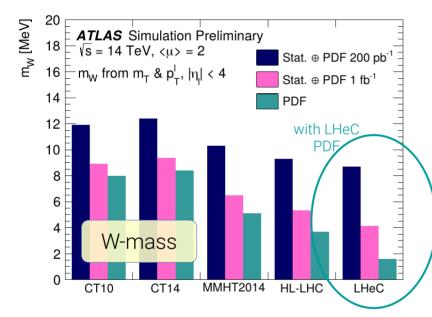

- All PDF flavors are precisely determined from LHeC data alone
- Gluon density: very import for LHC

Many further parameters


- a_s (~0.15%)
- parton-shower & hadronisation
- fragmentation func'
- PDFs at quark thresholds

• ...

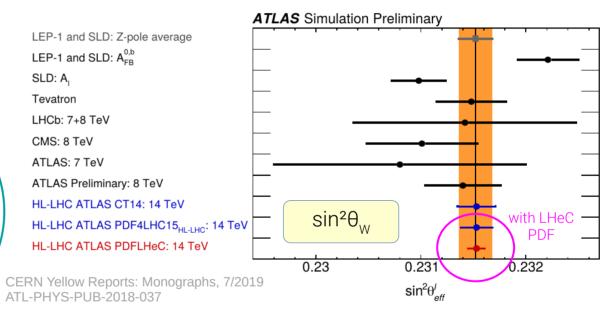
Parton luminosities at the pp-LHC



- Significiant reduction of gluon-gluon luminosities with LHeC than nowadays PDFs, or HL-LHC prospects
- Quark-PDFs with similar reductions!

The impact of LHeC on HL-LHC (through PDFs)

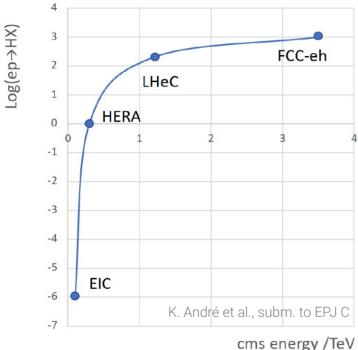
W-mass measurements in pp


Major uncertainty from PDFs

• Reduction of PDF uncertainty only feasible with LHeC PDFs $(\Delta m_W^{PDF} \sim 2 MeV)$

Effective weak mixing angle in pp

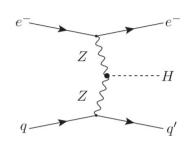
Large uncertainty from PDFs



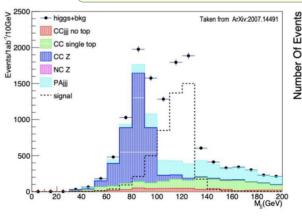
- HL-LHC-PDF reduces uncertainty by 10-25%
- → LHeC ep data would provide needed factor of 5-10 in PDF improvement to exceed LEP precision

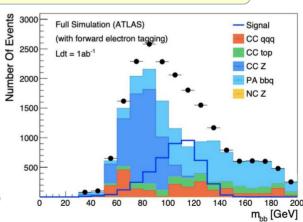
Higgs physics at LHeC

See also talk by U. Klein



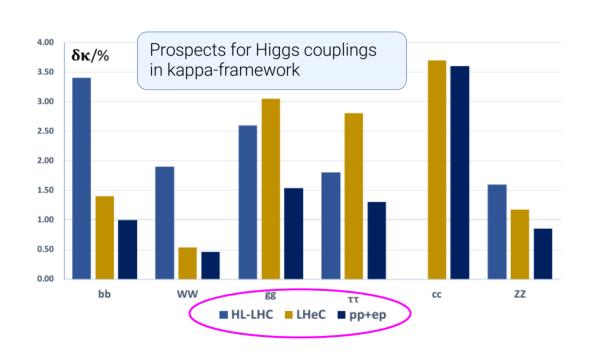
- Higgs-production cross section ~ 200pb
- Sensitivity to six decay channels
 bb, WW, gg, ττ, cc, ZZ


Higgs in CC and NC DIS



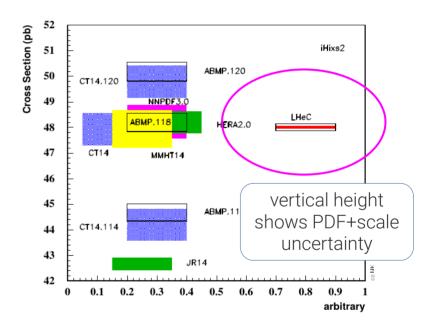
Example of *H→bb* analysis using DELPHES or a full (ATLAS) detector simulation

[M. Schott, off-shell conference 2021; see also arXiv:2007:14491]



Higgs physics

Higgs couplings in κ framework


Common analysis of p-p and e-p data

- Highest precision achieved only in common analysis
- Complete view of Higgs couplings only achieved in common analysis

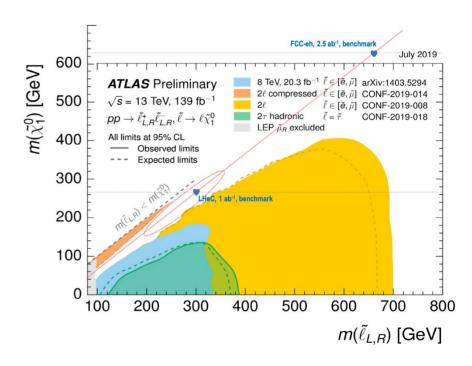
Higgs phenomenology

N3LO pp-Higgs cross section at 14 TeV

- Predictions limited by PDF uncertainties
- only LHeC predictions by N3LO scale uncertainties

Searches

LHeC-PDFs for searches in pp


 Limits on contact interactions at LHC are limited by PDF uncertainties

Model	ATLAS (Ref. [709])	HL-LHC	
	$\mathcal{L} = 36 \text{fb}^{-1} (\text{CT14nnlo})$	$\mathcal{L} = 3 \mathrm{ab^{-1} \ (CT14nnlo)}$	$\mathcal{L} = 3 \mathrm{ab}^{-1} \; (\mathrm{LHeC})$
LL (constr.)	$28\mathrm{TeV}$	$58\mathrm{TeV}$	96 TeV
LL (destr.)	$21\mathrm{TeV}$	$49\mathrm{TeV}$	$77\mathrm{TeV}$
RR (constr.)	$26\mathrm{TeV}$	$58\mathrm{TeV}$	$84\mathrm{TeV}$
RR (destr.)	$22\mathrm{TeV}$	$61\mathrm{TeV}$	$75\mathrm{TeV}$
LR (constr.)	$26\mathrm{TeV}$	$49\mathrm{TeV}$	81 TeV
LR (destr.)	$22\mathrm{TeV}$	$45\mathrm{TeV}$	$62\mathrm{TeV}$

- Precise PDFs from LHeC extent limits significantly (almost a factor of 2)
- LHeC limits are of similar reach → Competition!
- Searches in *ep* are often complementary to those in pp:
 - s-channel vs. t-channel exchange
 - ep (leptoquark) vs. e+e-, q\overline{q}, gg-annihiliation

Complementary searches

As example: compressed SUSY scenarios

Compressed-slepton scenario:
 Maximum sensitivity in ep for Δm~20GeV

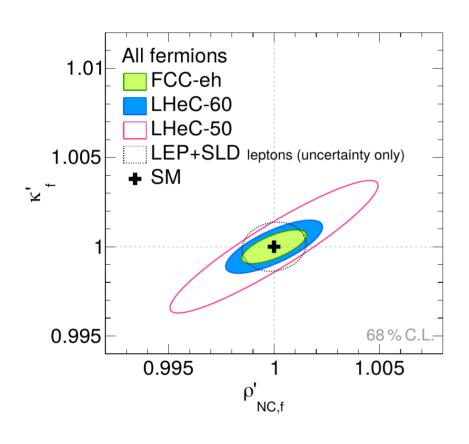
Summary

The LHeC project

- 50 GeV electron from ERL on 7TeV proton ($\sqrt{s}=1.3TeV$), synchronous with LHC & high-luminosity *ep* collisions
- Very rich & diverse physics programme

Electroweak physics (Eur.Phys.J.C 80 (2020) 831 & CDR-2020 [arXiv:2007.14491])

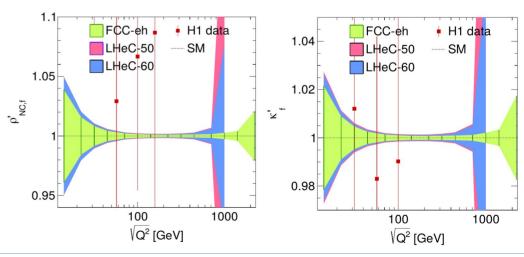
- Fundamental EW parameters: competitive with other measurements
- Complementary to Z-pole data different aspects of GSW theory are measured
- Several unique measurements possible (Q²-dependence, charged current, light-quarks couplings,...)


Support of HL-LHC proton-proton programme

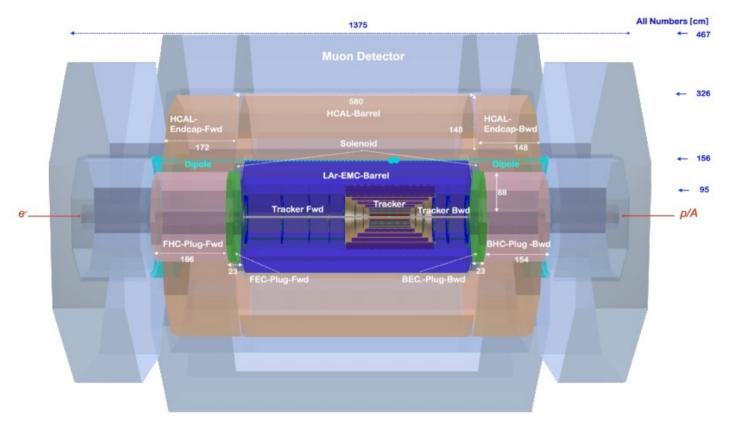
- Complementary measurements (s-channel vs. t-channel, clean low-p_T measurements, clean QCD final-state [H→bb], etc...)
- Supportive measurements (PDFs, parton shower, hadronisation, fragm. functions, etc...)
- Competeing measurements (Higgs, EW, etc...)
- PDFs for phenomenology
- clarification of initial versus final state effects in hadronic collisions (the small system problem)

Anomalous form factors

Generically parameterise new physics by modified EW-couplings



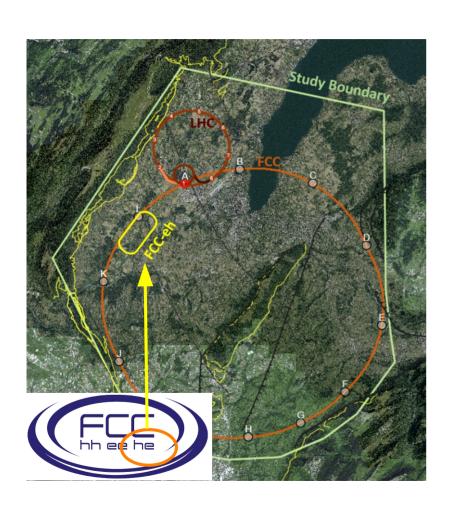
• Introduce anomalous form factors ρ' and κ' In SM: ρ' and $\kappa' = 1$


$$g_A^f = \sqrt{\rho'_{\text{NC},f}\rho_{\text{NC},f}} I_{\text{L},f}^3,$$

$$g_V^f = \sqrt{\rho'_{\text{NC},f}\rho_{\text{NC},f}} \left(I_{\text{L},f}^3 - 2Q_f\kappa'_f\kappa_f\sin^2\theta_W\right)$$

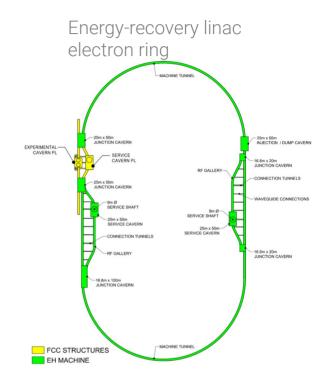
• Parameters may be Q² dependent (similar to running weak mixing angle)

Updated baseline detector design



- Based on LHC & HERA experience & HL-LHC plans
- Aim: compact, modular and very hermetic detector
- Coverage: 1 to 179 degrees

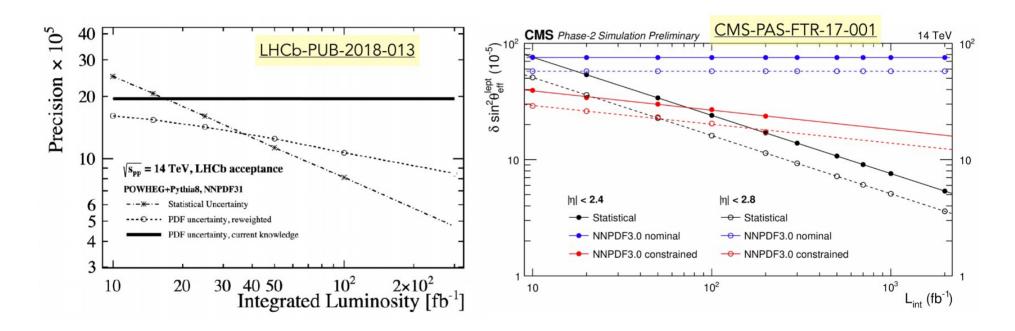
Main components


- High acceptance silicon tracking system
- LAr electromagnetic calorimeter
- Detector & steering magnets
- Iron-Scintillator hadronic calorimeter
- Forward backward calo (Si/W, Si/Cu, ...)
- Forward (p/n) & Backward (e/γ) taggers
- Muon system

FCC-eh

FCC-eh

- Dedicated electron-ring attached to FCC-hh
- Energy recovery linac:
 E_e = 60 GeV
- Longitudinal beam polarisation of ~ ±80%
- Three-turn configuration
 - → 3 arcs



ep-collision data

- √s ~ 3.5 TeV
- More than 1 ab-1 integrated luminosity
- Mainly e- data
 e+ data with O(10fb-1)

Weak mixing angle at the HL-LHC

LHC experiments entered the precision electroweak race: New analysis techniques, including in-situ PDF profiling and event categorisation substantially reduced statistical and systematic uncertainties wrt previous LHC measurements.

Current and future measurement at pp collider limited by PDF uncertainty