LUXE: A NEW EXPERIMENT TO STUDY **NON-PERTURBATIVE QED**

LOUIS HELARY (DESY) ON BEHALF OF LUXE

EPS HEP — JULY 26TH - 30TH 2021 — HAMBURG (ONLINE)

S-HEP Conference 2021

European Physical Society conference on high energy physics 2021

INTRODUCTION: QED, VACUUM AND STRONG FIELD QED

- QED: one of the most well-tested physics theory!
 - Calculation in QED based on perturbative theory of α_{EM} .
 - Prediction electron (g-2) precision better than 1 part in a trillion!
- Vacuum:
 - Virtual particles that can be charged and couple to fields.
 - Quantum fields: average is zero, but variance is not!
 - Physical particle travel in vacuum affected by interactions with these.
- If one apply a strong electromagnetic field on a vacuum:
 - $W_{\text{field}} < 2 m_{\text{e}}$

 $W_{\text{field}} > 2$

- QED becomes non perturbative above Schwinger-limit → Strong field QED (SFQED)!
- Experimental consequences:
 - Field-induced ("Breit-Wheeler") Pair Creation
 - Modified Compton Spectrum.
- - Experimentally reached by colliding highly boosted electrons with high-intensity laser!

m_e, with:
$$W_{field} = \frac{\varepsilon e}{m_e}$$
 and $\varepsilon_{crit} = \frac{m_e^2 c^3}{\hbar e} \simeq 1.3 \cdot 10^{18} \, \text{V/m}$

Strong External Field

Vacuum

Virtual dipole screen

• Non-perturbative and strong field QED have never been reached in laboratory, accessible by LUXE!

Processes sensitive to in LUXE:

$$\xi = \frac{e \varepsilon_L}{m_e \omega_L c} \propto I_{Laser} \qquad \chi \approx \gamma \frac{\varepsilon_L}{\varepsilon_{crit}} \propto \sqrt{I_{Laser}} E_{beam}$$

$$\xi \ll 1$$
: R_e^+
 $\xi \gg 1$: $R_e^+ \propto$

Predictions:

 $\propto \xi^{2n} \propto I^n$ $\propto \chi_{\gamma} \exp\left(-\frac{8}{3\chi_{\gamma}}\right)$

Perturbative regime, rate follows power law Non-perturbative regime, departure from power law

INTRODUCTION: SFQED STATE OF THE ART

- Historically SFQED studied first in 1990's at SLAC E144 (experiment)
 - 1TW laser with I_{Laser}=10¹⁸ W/cm²
 - e- beam: 46.6 GeV
 - reached $\xi < 0.4$, $\chi \le 0.25$
 - observed multi-photon interaction: $e^- + n\gamma_L \rightarrow e^- e^+ e^-$ process
 - observed start of the ξ^{2n} power law, but not departure
- Nowadays multiple experiments proposed worldwide:
 - SLAC-E320 (US), Astra Gemini (UK), ELI-NP (RO), LUXE (DE)
- Luxe allow to measure with precision large part of ξ vs X phase space.
 - Might be the first one to report observation of non perturbative regime.
 - Only experiment proposed to directly explore photon-laser interactions.
- Main Luxe scientific goals:
 - Measure electron rate as a function of laser intensity.
 - Measure Compton edges.
 - Study BSM physics.

EUROPEAN XFEL

European XFEL:

- Running since 2017.
- Provide X-ray photons to 6 experiments.
 - Electron through undulator:
 - SASE (self-amplified spontaneous emission).
- Linear electron accelerator.
 - 2700 electron bunches at 10 Hz.
 - Aim to run at 16.5 GeV with 1.5e9 e-/bunch.
- Experiment will be located XS1 shaft in Orsdorfer Born.
 - Built for XFEL extension (after 2029).
- Experiment will have no impact on photon science,
 - Only use 1 of the 2700 bunches.

LUXE IN SITU

LASER

- Chirped Pulse Amplification (CPA) technique
- Ti:Sa laser with 800 nm wavelength (E=1.55 eV).
- Two phases:
 - In phase 0 uses JETI40 (Jena custom 40 TW laser).
 - In phase I will use commercial 350 TW laser.
- Laser parameters:
 - Repetition rate: 1Hz.
 - Pulse length 30 fs
- Laser characterisation quantities: energy, pulse length, spot size
 - $\leq 5\%$ uncertainty on Laser intensity, 1% shot-to-shot uncertainty

Parameter	Phase 0	Phase 0	F
Laser power	40 TW		
Laser energy after compression [J]	1.2		
Percentage of laser in focus [%]	50		
Laser focal spot size w ₀ [µm]	>8	>3	
Peak intensity [10 ¹⁹ W/cm2]	1.9	13.3	
Peak intensity parameter ξ	3.0	7.9	
Peak quantum parameter X E _{beam} =16.5 GeV	0.56	1.5	

RATES PER BUNCH CROSSING

Electron-laser:

Gamma-laser:

See O. Borysov talk on Monday https://indico.desy.de/event/28202/contributions/105760/

COMPTON EDGE SHIFT

• Need to measure Compton edges, as they will be shifted to lower energies in SFQED!

Electron energy spectrum to reconstruct Edges using **Finite Impulses Response Filter** (FIR) technique. Compare result to theory prediction in phase 0:

10

BSM PHYSICS?

- Explore sensibility to BSM theories.
 - Axion-like particles (ALPs) produced in dump.
 - New neutral particles produced at IP.
 - Milli-charged particles

• For ALPs:

- sensitive to masses m(a)~100 MeV.
- decay to photons after some lifetime τ .
- Place detector behind dump.
- Could use calorimeter with good pointing resolution to constrain decay point.

- First sensitivity show very competitive results!
 - After just 1 year of data.

- CDR recently released.
 - Now working toward TDR for 2022.
- Experiment has to be installed in XS1 by 2024.
 - Long shutdown of the XFEL.
 - Only moment where the beam-line can be installed.
 - Data taking to start in 2024.
 - Start with e-laser.
 - γ-laser to start in 2025.
 - Laser upgrade (350 TW) in 2026.
 - Run until XFEL want to construct new fan (2029 for now).

In parallel of review continue detector R&D, and experiment planification.

Plan to perform multiple test-beam campaign in the future.

		2021			
		Q1	Q2	Q2	Q
Beamline	Finalize design				
	Prepare installation				
	Infrastructure installation				
	Beamline installation				
	Commission beamline				
Laser	Clean room installation				
	Finalize design				
	install diagnostics				
	JETI 40 installation				
	JETI40 & diag. commission				
	350 TW laser installation				
	350 TW laser commission				
Detectors	Finalize design & prototyping				
	Construction & indiv. testing				
	Combined testing				
	Install & commission				
	upgrades installation (tbc)				
Commission					
Data taking	phase-0 e-laser/γ-laser				
	phase-I e-laser/γ-laser				
		-	-		

12

- The LUXE experiment will allow to measure QED in uncharted regime! • Might expect some surprises there!
- Synergy experiment between particle physics and Laser physics!
 - 10⁻² to 10⁹ per bunch crossing.
 - Innovative development for Laser control system, and Laser diagnostics underway.

• LUXE CDR is now out, working on the TDR for 2022!

• Still lot of works to do before the experiment can be running in 2024.

• Experiment planing to function on established technology to cope with challenging rate to measure!

THANK YOU FOR YOUR ATTENTION!

Conceptual Design Report for the LUXE Experiment

H. Abramowicz¹, U. Acosta^{2,3}, M. Altarelli⁴, R. Aßmann⁵, Z. Bai^{6,7}, T. Behnke⁵, Y. Benhammou¹, T. Blackburn⁸, S. Boogert⁹, O. Borysov⁵, M. Borysova^{5,10}, R. Brinkmann⁵, M. Bruschi¹¹, F. Burkart⁵, K. Büßer⁵, N. Cavanagh¹², O. Davidi⁶, W. Decking⁵, U. Dosselli¹³, N. Elkina³, A. Fedotov¹⁴, M. Firlej¹⁵, T. Fiutowski¹⁵, K. Fleck¹², M. Gostkin¹⁶, C. Grojean^{*5}, J. Hallford^{5,17}, H. Harsh^{18,19}, A. Hartin¹⁷, B. Heinemann^{†5,20}, T. Heinzl²¹, L. Helary⁵, M. Hoffmann^{5,20}, S. Huang¹, X. Huang^{5,15,20}, M. Idzik¹⁵, A. Ilderton²¹, R. Jacobs⁵, B. Kämpfer^{2,3}, B. King²¹, H. Lahno¹⁰, A. Levanon¹, A. Levy¹, I. Levy²², J. List⁵, W. Lohmann^{‡5}, T. Ma²³, A.J. Macleod²¹, V. Malka⁶, F. Meloni⁵, A. Mironov¹⁴, M. Morandin¹³, J. Moron¹⁵, E. Negodin⁵, G. Perez⁶, I. Pomerantz¹, R.Pöschl²⁴, R. Prasad⁵, F. Quéré²⁵, A. Ringwald⁵, C. Rödel²⁶, S. Rykovanov²⁷, F. Salgado^{18,19}, A. Santra⁶, G. Sarri¹², A. Sävert¹⁸, A. Sbrizzi^{§28}, S. Schmitt⁵, U. Schramm^{2,3}, S. Schuwalow⁵, D. Seipt¹⁸, L. Shaimerdenova²⁹, M. Shchedrolosiev⁵, M. Skakunov²⁹, Y. Soreq²³, M. Streeter¹², K. Swientek¹⁵, N. Tal Hod⁶, S. Tang²¹, T. Teter^{18,19} D. Thoden⁵, A.I. Titov¹⁶, O. Tolbanov²⁹, G. Torgrimsson³, A. Tyazhev²⁹, M. Wing^{5,17}, M. Zanetti¹³, A. Zarubin²⁹, K. Zeil³, M. Zepf^{18,19}, and A. Zhemchukov¹⁶

More informations:

- CDR, accepted by European Physics Journal ST: https://arxiv.org/abs/2102.02032
- Detector talk@EPS: https://indico.desy.de/event/28202/contributions/105760/
- BSM talk@EPS: https://indico.desy.de/event/28202/contributions/105538/

