SMEFT analysis of VBS and VV data

Giacomo Magni Nikhef and VU Amsterdam

Monday 26th July 2021, EPS-HEP 2021 Top and Electroweak Physics session

Introduction:

Present a SMEFiT " stand-alone study", results based on: <u>10.1140/epjc/s10052-021-09347-7</u>

- Motivation and SMEFT theory settings
- Combined VV + VBS EFT data analysis with SMEFIT
- Future Prospects: a toy model for HL-LHC

J.J. Ethier, R. Gomez-Ambrosio, G. Magni and J. Rojo

Further details on SMEFiT in

J. Rojo talk (Wed 28th)

Motivation

- Several Run-II VBS measurements are now available
- Very challenging analysis
- Precision still far from Higgs and diboson
- Room for BSM effects (heart of EWSB)

Goals of the project:

- Study VBS in a combined fit with VV
- interplay between VBS and VV in a dim6 SMEFT study

З

Theory **SMEFT in VBS and VV**

Expand SM Lagrangian as:

 $\mathscr{L}_{SMEFT} = \mathscr{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i$

- Operators from the Warsaw basis (dim 6)
- Including only bosonic operators: 2F2H, 2H2V, HDH^2, 3V
- CP violating operators
- ✦ Restrict to linear dim 6
- dim8 and quadratics for the future

VBS VVjj

Methodology **Experimental datasets**

- Dataset from LHC Run II •
- Unfolded fiducial and differential cross • sections of VV and VBS
- All vectors decay into leptons
- ✦ EFT effects in "signal" region only

Final state	Selection	Observable	$n_{ m dat}$	$\mathcal{L} \text{ (fb}^{-1})$	Label
$W^\pm W^\mp$	VV	${ m d}\sigma/{ m d}m_{e\mu}$	13	36.1	ATLAS_WW_memu
		${ m d}\sigma/{ m d}m_{e\mu}$	13	35.9	CMS_WW_memu
$W^{\pm}Z$	VV	$\mathrm{d}\sigma/\mathrm{d}p_{T_Z}$	7	36.1	ATLAS_WZ_ptz
		${ m d}\sigma/{ m d}p_{T_Z}$	11	35.9	CMS_WZ_ptz
ZZ	VV	$d\sigma/dm_{ZZ}$	8	137	CMS_ZZ_mzz
Total diboson			52		

Dataset available by end of 2020

Final state	Selection	Observable	$n_{ m dat}$	$\mathcal{L}~(\mathrm{fb}^{-1})$	Label
$W^{\pm}W^{\pm}jj$	EW-only	$\sigma_{ m fid}$	1	36.1	ATLAS_WWjj_fi
	EW-only	$\sigma_{ m fid}$	1	137	CMS_WWjj_fid
	EW+QCD	${ m d}\sigma/{ m d}m_{ll}$ (*)	4		CMS_WWjj_mll
$ZW^{\pm}jj$	EW+QCD	${ m d}\sigma/{ m d}m_{T_WZ}$	5	36.1	ATLAS_WZjj_mw
	EW-only	$\sigma_{ m fid}$	1	137	CMS_WZjj_fid
	EW+QCD	$\mathrm{d}\sigma/\mathrm{d}m_{jj}$ (*)	4		CMS_WZjj_mjj
77:0	EW+QCD	$\sigma_{ m fid}$	1	139	ATLAS_ZZjj_fi
$ZZ\jmath\jmath$	EW-only	$\sigma_{ m fid}$	1	139	CMS_ZZjj_fid
77 • •	EW-only	$\sigma_{ m fid}$	1	36.1	ATLAS_AZjj_fi
$\gamma \mathbf{Z} j j$	EW-only	$\sigma_{ m fid}$	1	35.9	CMS_AZjj_fid
VBS total (unfolded)			18		
ZZjj	EW+QCD+Bkg	Events/ m_{ZZ}	4	139	CMS_ZZjj_mzz
$\gamma Z j j$	EW+QCD+Bkg	Events/ $p_{T_{\ell\ell\gamma}}$	11	36.1	ATLAS_AZjj_ptl
VBS total (detector-level)			15		

Other channels for future update: *Ζγ CMS*, *Ζjj* ...

d JZ d id .la

Methodology **Theoretical calculations**

$$\sigma_{SMEFT} = \sigma_{SM} + \sum_{i=1}^{N_{dof}=16} \frac{c_i}{\Lambda^2}$$

Combining many HEP tools to achieve good predictions:

- **SM** MC event generation with *Madgraph* and/or *PowhegBox* @ **NLO**
- 2. **EFT linear** contribution @ LO with: SmeftSim UFO model ($SU(3)^5$ symmetry)
- **Parton shower** using *Pythia8* and experimental phase 3. space selection with *ad-hoc Rivet* analysis
- Experimental data with corresponding uncertainties collected from *Hepdata*

 $\sigma_{i}^{(int)}$

6

Methodology **Sensitivity plots**

Study the impact of each operator in the experimental phase space region, fixing the Wilson coefficient to a reference value

We observe:

- Larger effects not only in the high • energy tails
- What are the optimal observables to • include in the fit?

 $d\sigma/dm_{\ell\ell} \, [\mathrm{fb}/\mathrm{GeV}]$ 10^{-}

 10^{-}

-0.5 - 0

100

50

150

200

VBS WWjj ATLAS $\sqrt{s} = 13 \text{ TeV}$

800

600

400

200

0

1000

1200

 m_{ZZ} [GeV]

1400

 $VBS WZjj CMS, \sqrt{s} = 13 TeV$

250

300

Methodology Fisher information

Trace of:

$$I_{i,j} = E\left[\frac{\partial^2 \ln f(\sigma_{exp} \mid c)}{\partial c_i \partial c_j}\right] = \sum_{m=1}^{n_{dat}} \frac{\sigma_{(m,i)}^{(eft)} \sigma_{m,j}^{(eft)}}{\delta_{exp,m}^2}, \quad i, j = 1.$$

And normalised per operator.

- It shows how each channel contribute to the fit result.
- Computed before fitting

We observe:

- ✦ 2F2H operators dominated by VV
- VBS plays a role for purely boson operators:
 HDH^2, 2H2V, 3V

 $\dots n_{op}$

8

Methodology Fitting strategy

Fit the data with SMEFIT [Web site] (see J. Rojo talk):
 Define the figure of merit to minimise as:

$$\chi^{2}(c_{k}) = \frac{1}{N_{data}} \sum (O_{exp,i} - O_{th})$$

- Include available experimental uncertainties, correlations and theory uncertainties (*from MC and pdfs*).
- Use NESTED SAMPLING : sampling the posterior as :

$$p(c_k | data) = \frac{1}{Z} \mathcal{L}(data | c_k) \Pi(data | c_k) \Pi$$

Multi Gaussian Likelihood

SM**EFiT**

 $_{n,i})(cov^{-1})_{ij}O_{exp,j} - O_{th,j})$

Fit Output & dataset quality

- Some statistical fluctuations for individual VBS measurements
 (should improve when more data points will be available)
- Global reduced chi2: $\chi^2 \approx 1$
- MHOU (SM and EFT) not included

Process	Dataset	$\mid n_{ m dat}$	$\mid \chi^2/n_{ m dat}~({ m SM})$	$\mid \chi^2/n_{ m dat}~({ m EFT})$
Diboson	ATLAS_WW_memu	13	0.70	0.66
	CMS_WW_memu	13	1.28	1.32
	ATLAS_WZ_ptz	7	1.38	0.93
	CMS_WZ_ptz	11	1.48	1.14
	CMS_ZZ_mzz	8	1.17	0.74
	Total diboson	52	1.17	0.97
VBS	ATLAS_WWjj_fid	1	0.01	0.67
	CMS_WWjj_fid	1	2.17	0.15
	CMS_WWjj_mll	3 0.31		0.45
	ATLAS_WZjj_mwz	5	1.60	1.52
	CMS_WZjj_fid	1	0.38	0.79
	CMS_WZjj_mjj	3	1.10	0.73
	ATLAS_ZZjj_fid	1	0.09	0.15
	CMS_ZZjj_fid	1	0.02	0.02
	ATLAS_AZjj_fid	1	0.00	0.25
	CMS_AZjj_fid	1	0.03	0.38
	Total VBS	18	0.83	0.75
	Total	70	1.084	0.917

Fit output VV+VBS fit

Posterior distribution VV+VBS

Central values and 95 % CL

Fit output **2D Fits**

- Useful to spot correlation • between operators.
- Understand how the • combined fit behaves with respect to the VV-only or VBS-only

Complementarity between VBS and VV data

when looking at dim6 EFT effects !

1.5

1.0

0.5

0.0

-0.5

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

 cpB

 cpW

Toy model Dataset variation

Effect of differential ZZjj and $Z\gamma$ jj:

- 1. Break degeneracy on c_{pB} and $c_{pB} \widetilde{B}$
- 2. Improve globally the VBS only fit.

ZZjj	EW+QCD+Bkg	Events/m_{ZZ}	4	139	CMS_ZZjj_mzz
$\gamma Z j j$	EW+QCD+Bkg	$\mathrm{Events}/p_{T_{\ell\ell\gamma}}$	11	36.1	ATLAS_AZjj_ptlla
VBS total (detector-level)			15		

To test this, add to our baseline two detector level distributions (only bins with high statistics)

Differential results make a big difference!

Posterior distribution

Toy model VBS at HL-LHC

$$\sigma_i^{HL-LHC} = \sigma_i^{th}(1 + r_i \delta_{tot,i}^{exp})$$

Assume the systematic errors reduce by 50% while statistical by 80 %
 Create gaussian dataset
 Keep LHC binning
 61 data points from VBS

Central values -100

 10^{3}

 10^{2}

 10^{1}

 10^{0}

 10^{-1}

 10^{-2}

95% Confidence Level Bounds

and 95 % CL

Summary and outlook

VBS can be used to check TGC and QGC,

but can validate also the Higgs sector

On the way towards a "global" fit:

Top + H + VV + VBS and $\approx \mathcal{O}(100)$ operators

Theory improvements:

- Including Dim 6 quadratics terms
- Account for NLO effects in EFT
- Can VBS give indirect information about Higgs potential?
- Can we compare with Dim 8 EFT operators?

Fit improvements:

- Add more experimental data
 (ex: Zjj, Wjj, EWPO ...)
- Optimal observables

Thanks for your attention!

Fit output

Principal Components Analysis

Trace of:

$$PC_k = \sum_{i=1}^{n_{op}} = a_{k,i}c_i \quad k = 1,...n_{op}$$

And normalised per operator.

- There are NO flat directions in a VV + VBS fit •
- ✦ First PCs contains 2F2H operators.

Fit output CP EVEN only fit

Figure 4.12. Comparing the results of the baseline fit with those of the same fit where the CP-odd operators have been set to zero, such that only the CP-even ones remain.

· ~

Comparison with the literature

BDHLL: J. Baglio, S.Dawson, S.Homiller, S.Lane and I.Lewis FitMaker: J.Ellis, M.Madigan,K.Mimasu,V.Sanz and T.You