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Isotope Nuclear reaction
Natural isotope 
abundance, %

Thermal neutrons 
cross section, barn

3He 3He + n → 3H+ p

0.00014
Accumulated due to 

reaction:
!
"𝐻 → !

"𝐻𝑒 + 𝑒# + 𝜈$#
5330

6Li 6Li + n → 3H + α 7.4 940
10B 10B + n → 7Li + α 19.8 3840
12С 12С + n → 9Be + α 98.93 3.4

155Gd 155Gd + n →156Gd + γ 14.8 60991
157Gd 157Gd + n →158Gd + γ 15.65 254840

Due to high neutron cross section and brilliant scintillation 
properties, GAGG represents good candidate as a neutron detection 
material

Gd3Al2Ga3O12
scintillation properties
Light yield, 

ph/MeV 43000

Decay time, 
ns 70

Density 6.68

Zeff 54.4

CTR with 
511 keV, ps 160

Energy 
resolution 

511 keV
with SiPM
readout, %

6-7

Advantages of GAGG for neutron detection 

3Korzhik-26-7-21

Distribution of the number of the emitted gammas  for
thermal neutrons
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GEANT4 simulation of the distribution of the number of the 
emitted gamma-quanta in GAGG  under neutrons of different 

energies.
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Distribution of the number of the emitted gammas  for neutrons of 
different energy
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GAGG family of inorganic scintillation materials
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GdLuAGG 
(Gd,Lu)3Al2Ga3O12:Ce 

GYAGG 
(Gd,Y)3Al2Ga3O12: 

Ce,Mg

GAGG 
Gd3Al2Ga3O12: 

Ce,Mg

LY, ph/MeV 60000 50000 41000
Decay/fraction
ns(%)

24 (60); 60 (30); 520 (10) 36 (80); 97 (20) 28 (30); 68 (52); 168 (18)

Radiation tolerance
𝜸-quanta

hadrons

🤓
Not studied

🤓
Not studied

🤓
🤓

Scintillation 
maximum, nm

508 510 520

CTR with 511keV 
and SiPM, ps

Not measured 112+/-5 160+/-5

Since the main channel for registering neutrons is low-energy γ-quanta, it is possible to 
use thin crystals for the En below a few MeV . This  helps to solve the problem of n/γ
discrimination as well.
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Expected time resolution 
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Sample
CTR FWHM, ps, at different 

temperatures

+20oC 0oC -20oC

GAGG

multidoped
165±3 160±2 164±2

511 keV coincidence time resolution  
measured with RGB SiPMs (FBK) at different 
temperatures

sigma[ps] = 3729.9*(E[keV])-0.5
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Time resolution is expected to be below 500 ps
at the detection of the gamma-quanta with 
energy ~100 keV,whch are created by neutrons 



Detector prototype and measurements layout

SiPM-amplifier coupling PCBGAGG matrix  in aluminum holder
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MIT @ Marburg Clinic

• proton beam 220 MeV
• average count rate 40-50 

kHz
• Pb (p,xn) X : spectrum of 

neutrons in the energy 
range up to 200 MeV and γ-
quanta up to 10 MeV

Prototype



GEANT4 simulation 
Neutron energy spectrum  inside  and outside the  lead target 
100x100x60mm  under 220MeV protons

Energy vs TOF dependence for 0.5 m distance

Estimated distance (L) from target (Pb) to 
detector for the neutrons discrimination
Number of primary protons Np = 107

L, m Nn Nγ Ncharge tγ, ns tn, ns

0.25 25435 3838 67 1.5 2.5

0.5 7104 1105 18 2 4

1 1817 274 10 4 7

3 216 30 0 11.5 19.5
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Energy spectrum (left) and time spectrum (right) of neutrons hitting the stop counter

start

veto

Distribution of neutrons by emission angles and energy  outside the target



Simulation versus measurements
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Time spectrum of neutrons and gamma-quanta recorded with GAGG detector, according to the simulation 
results (left) and the measured spectrum by the STOP(matrix) channel (right)

The resulting time spectrum demonstrates a structure similar to that obtained during the 
simulation with GEANT4: the presence of two peaks in the first 20 ns, which can be 
compared with the accompanying γ-quanta and fast neutrons.



Role of the light nuclei in GAGG for the fast neutron 
detection

Korzhik-26-7-21 10



Energy distribution of the products of the reactions of the high 
energy neutrons in GAGG
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Comparison of enegy distribution and energy deposition from charged particles (protons 
and alpha-particles) created in GAGG under 200 MeV neutrons. 

Both protons and alpha-particles  can be utilized for PSD to discriminate 
fast neutrons
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PSD = 1 – Qs/Ql

Pulse shape  discrimination  by digitizing of the signals

A major mechanism of interaction of fast neutrons in GAGG is (n, p), (n, α) reactions on light nuclei. The 
kinetics of scintillations under α-particles and protons in the initial stage is faster than under the gamma-
quanta. This makes it possible to discriminate the signals according to the pulse shape (PSD).

Scintillation pulse recorded 
with DRS-4 digitizer (PSI)

( 1 bin=200ps)
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Proof of the PSD concept with GAGG

A combined source of a-particles (238Pu) and g-quanta (137Cs) has been applied to
GAGG (3 х 3 х 12 мм) sample.
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Conclusions 

• GAGG material has a unique combination of properties, 
which makes it a candidate to measure neutrons in a wide 
energy range;

• The  GAGG pixelated detector with  SiPM readout was found 
to be suitable to detect  fast neutrons;

• GAGG pixelated  detector matrix provides capabilities for  
more detailed analysis and background discrimination; 

• Pulse shape analysis can be implemented to discriminate  
fast neutrons from gamma-quanta background.
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