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Advantages of GAGG for neutron detection
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GEANT4 simulation of the distribution of the number of the
emitted gamma-quanta in GAGG under neutrons of different

energies.
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Distribution of the number of the emitted gammas for neutrons of
different energy
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GAGG family of inorganic scintillation materials

GYAGG
(Gd,Y)3AIzG33012:

GAGG
GdgAIzGagolz:

Ce,Mg Ce,Mg
LY, ph/MeV 60000 50000 41000
Decay/fraction 24 (60); 60 (30); 520 (10) 36 (80); 97 (20) 28 (30); 68 (52); 168 (18)
ns(%)
Radiation tolerance
Y-quanta e9 g9 g9
hadrons Not studied Not studied @
Scintillation 508 510 520
maximum, nm
CTR with 511keV | Not measured 112+/-5 160+/-5
and SiPM, ps

Since the main channel for registering neutrons is low-energy y-quanta, it is possible to
use thin crystals for the E, below a few MeV . This helps to solve the problem of n/y
discrimination as well.
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Expected time resolution
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511 keV coincidence time resolution

measured with RGB SiPMs (FBK) at different T L
E (gamma eq.), keV

temperatures

Time resolution is expected to be below 500 ps
at the detection of the gamma-quanta with
energy ~100 keV,whch are created by neutrons
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Detector prototype and measurements layout

GAGG matrix in aluminum holder

MIT @ Marburg Clinic

proton beam 220 MeV
average count rate 40-50
kHz

Pb (p,xn) X : spectrum of
neutrons in the energy
range up to 200 MeV and y-
guanta up to 10 MeV

i Synchrotron (5) |
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(6) Extraction line and .
spill-abort system I !
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Injection (4
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ECR ion sources (1)
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Counts

Neutron energy spectrum inside and outside the lead target

GEANTA4 simulation

100x100x60mm under 220MeV protons
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Energy spectrum (left) and time spectrum (right) of neutrons hitting the stop counter
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Simulation versus measurements

GAGG time summarized
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Time spectrum of neutrons and gamma-quanta recorded with GAGG detector, according to the simulation
results (left) and the measured spectrum by the STOP(matrix) channel (right)

The resulting time spectrum demonstrates a structure similar to that obtained during the
simulation with GEANT4: the presence of two peaks in the first 20 ns, which can be
compared with the accompanying y-quanta and fast neutrons.
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Role of the light nuclei in GAGG for the fast neutron
detection

Reactions rates in GAGG + n(14.6 MeV) @ V=1 cm3, j=1 n/(cm2*s)
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Energy distribution of the products of the reactions of the high

energy neutrons in GAGG
GAGG 8x8 matrix 200MeV-neutrons

alpha kinetic energy

Counts

proton kinetic energy

alpha deposite energy |-

proton deposite energy

0 200
energy, MeV

Comparison of enegy distribution and energy deposition from charged particles (protons
and alpha-particles) created in GAGG under 200 MeV neutrons.

Both protons and alpha-particles can be utilized for PSD to discriminate

fast neutrons
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Pulse shape discrimination by digitizing of the signals

A major mechanism of interaction of fast neutrons in GAGG is (n, p), (n, a) reactions on light nuclei. The
kinetics of scintillations under a-particles and protons in the initial stage is faster than under the gamma-
guanta. This makes it possible to discriminate the signals according to the pulse shape (PSD).
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Proof of the PSD concept with GAGG

A combined source of a-particles (*33Pu) and y-quanta (13/Cs) has been applied to

GAGG (3 x3 x12 mm) sample.

Counts

GAGG pixel 3x3x12 mm? + y (662 keV) + a (2°8Pu)

Energy spectrum

4000

3500

3000

2500

2000}t

1500

1000

500

o] ool o o o o o o |

0 I[lI|IIII|III]|IIII|III

662 keV

I[ll

speci

Entries

Mean

Std Dev

149999

21.02

16.48

o (2%8Pu)

II|I]II L1l

0 5 10

Charge, a.u.

156 20 25 30 35 40 45 50

0.9

0.8

0.7

0.6

Korzhik-26-7-21

PSD vs Amplitude
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Conclusions

* GAGG material has a unique combination of properties,
which makes it a candidate to measure neutrons in a wide
energy range;

* The GAGG pixelated detector with SiPM readout was found
to be suitable to detect fast neutrons;

 GAGG pixelated detector matrix provides capabilities for
more detailed analysis and background discrimination;

* Pulse shape analysis can be implemented to discriminate
fast neutrons from gamma-quanta background.
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