

Fast neutron detection with GAGG/SiPM matrix detector

M. Korzhik^{*1,2}, V. Alenkov³, K.-Th. Brinkmann⁴, O. Buzanov³, G. Dosovitskiy^{1,5}, V. Dormenev⁴, A. Fedorov^{1,2}, V. Mechinsky^{1,2}, V. Kornoukhov³, D. Kozlov², V. Retivov^{1,5}, V. Vasiliev³, H.-G. Zaunick⁴

¹National Research Center "Kurchatov Institute", Moscow, Russia ²Institute for Nuclear Problems, Minsk, Belarus ³FOMOS-MATEIALS, Moscow, Russia ⁴Justus Liebig University, Giessen, Germany ⁵NRC "Kurchatov Institute" - IREA, Moscow, Russia

- 1. Neutron detection with Gd-based inorganic scintillators
- 2. Garnet family of the scintillation materials
- **3. TOF capabilities with GAGG**
- 4. PSD capabilities with GAGG

Advantages of GAGG for neutron detection

	Isotope	Nuclear reaction	Natural isotope abundance, %	Thermal neutrons cross section, barn	Gd ₃ Al ₂ G scintillation	a ₃ O ₁₂ propertie
		³He + n → ³H+ p	0.00014 Accumulated due to	5330	Light yield, ph/MeV	43000
	³ He		reaction: ${}^{3}_{1}H \rightarrow {}^{3}_{1}He + e^{-} + v_{c}^{2}$		Decay time, ns	70
Ī	⁶ Li	6 Li + n \rightarrow 3 H + α	7.4	940	Density	6.68
	¹⁰ B	$^{10}B + n \rightarrow ^{7}Li + \alpha$	19.8	3840	7eff	54 4
	¹² C	$^{12}C + n \rightarrow ^{9}Be + \alpha$	98.93	3.4		0
	¹⁵⁵ Gd	155 Gd + n \rightarrow^{156} Gd + γ	14.8	60991	CTR with	160
	¹⁵⁷ Gd	¹⁵⁷ Gd + n → ¹⁵⁸ Gd + γ	15.65	254840	511 keV, ps	
					Energy	

Due to high neutron cross section and brilliant scintillation properties, GAGG represents good candidate as a neutron detection material

resolution

511 keV

with SiPM

readout, %

GAGG/SiPM response to Pu-Be neutron source

Korzhik-26-7-21

6-7

GEANT4 simulation of the distribution of the number of the emitted gamma-quanta in GAGG under neutrons of different energies.

Distribution of the number of the emitted gammas for neutrons of different energy

GAGG family of inorganic scintillation materials

	GdLuAGG (Gd,Lu) ₃ Al ₂ Ga ₃ O ₁₂ :Ce	GYAGG (Gd,Y) ₃ Al ₂ Ga ₃ O ₁₂ : Ce,Mg	GAGG Gd ₃ Al ₂ Ga ₃ O ₁₂ : Ce,Mg
LY, ph/MeV	60000	50000	41000
Decay/fraction ns(%)	24 (60); 60 (30); 520 (10)	36 (80); 97 (20)	28 (30); 68 (52); 168 (18)
Radiation tolerance γ-quanta hadrons	🤓 Not studied	🤓 Not studied	6 3
Scintillation maximum, nm	508	510	520
CTR with 511keV and SiPM, ps	Not measured	112+/-5	160+/-5

Since the main channel for registering neutrons is low-energy γ -quanta, it is possible to use thin crystals for the E_n below a few MeV. This helps to solve the problem of n/γ discrimination as well.

Expected time resolution

Sample	CTR FWHM, ps, at different temperatures			
	+20°C	0°C	-20°C	
GAGG multidoped	165±3	160±2	164±2	

511 keV coincidence time resolution measured with RGB SiPMs (FBK) at different temperatures

Time resolution is expected to be below 500 ps at the detection of the gamma-quanta with energy ~100 keV,whch are created by neutrons

Detector prototype and measurements layout

GAGG matrix in aluminum holder

SiPM-amplifier coupling PCB

Prototype

$0 \qquad Semi-vertical (45°) beam line (8) \qquad for the formula of the f$

MIT @ Marburg Clinic

- proton beam 220 MeV
- average count rate 40-50 kHz
- Pb (p,xn) X : spectrum of neutrons in the energy range up to 200 MeV and γquanta up to 10 MeV

GEANT4 simulation

Neutron energy spectrum inside and outside the lead target 100x100x60mm under 220MeV protons

Estimated distance (L) from target (Pb) to detector for the neutrons discrimination Number of primary protons $N_p = 10^7$

L, m	N _n	Nγ	N _{charge}	t _γ , ns	t _n , ns
0.25	25435	3838	67	1.5	2.5
0.5	7104	1105	18	2	4
1	1817	274	10	4	7
3	216	30	0	11.5	19.5

Distribution of neutrons by emission angles and energy outside the target

Energy vs TOF dependence for 0.5 m distance

Energy spectrum (left) and time spectrum (right) of neutrons hitting the stop counter

Simulation versus measurements

GAGG time summarized

Time spectrum of neutrons and gamma-quanta recorded with GAGG detector, according to the simulation results (left) and the measured spectrum by the STOP(matrix) channel (right)

The resulting time spectrum demonstrates a structure similar to that obtained during the simulation with GEANT4: the presence of two peaks in the first 20 ns, which can be compared with the accompanying γ-quanta and fast neutrons.

Role of the light nuclei in GAGG for the fast neutron detection

Reactions rates in GAGG + n(14.6 MeV) @ V=1 cm3, j=1 n/(cm2*s)

Energy distribution of the products of the reactions of the high energy neutrons in GAGG

GAGG 8x8 matrix 200MeV-neutrons

Comparison of enegy distribution and energy deposition from charged particles (protons and alpha-particles) created in GAGG under 200 MeV neutrons.

Both protons and alpha-particles can be utilized for PSD to discriminate fast neutrons

Pulse shape discrimination by digitizing of the signals

A major mechanism of interaction of fast neutrons in GAGG is (n, p), (n, α) reactions on light nuclei. The kinetics of scintillations under α -particles and protons in the initial stage is faster than under the gammaquanta. This makes it possible to discriminate the signals according to the pulse shape (PSD).

Proof of the PSD concept with GAGG

A combined source of α -particles (²³⁸Pu) and γ -quanta (¹³⁷Cs) has been applied to GAGG (3 x 3 x 12 mm) sample.

GAGG pixel 3x3x12 mm³ + γ (662 keV) + α (²³⁸Pu)

Conclusions

- GAGG material has a unique combination of properties, which makes it a candidate to measure neutrons in a wide energy range;
- The GAGG pixelated detector with SiPM readout was found to be suitable to detect fast neutrons;
- GAGG pixelated detector matrix provides capabilities for more detailed analysis and background discrimination;
- Pulse shape analysis can be implemented to discriminate fast neutrons from gamma-quanta background.

Acknowledgements

Authors from National Research Center "Kurchatov Institute" are grateful for support of the grant of Russian Federation Government No. 14.W03.31.0004. This work was supported in the frame of BMBF Project 05K2019 – UFaCa