Contribution ID: 931

Type: Parallel session talk

Fast neutron detection with GAGG/SiPM matrix detector

Monday 26 July 2021 17:00 (15 minutes)

The spectacular progress in the improvement of scintillation properties of Ce doped Gd-based crystalline compounds was demonstrated in the last decade. That makes possible use of these materials for neutron detection, similarly to Li-based inorganic scintillators. Particularly, the materials of interest are compositionally disordered Gd3Al2Ga3O12 (GAGG) garnets, which are tolerant to a different kind of ionizing radiation, exhibit a high light yield of up to ~50000 photons/MeV, have scintillation decay time shorter than 80 ns, time resolution of annihilation \(\text{\text{\$\text{\$}}}\)-quanta \(\text{\$\text{\$\$}}\)-160ps. Their emission band peaks at \(\text{\$\$\text{\$\$}}\)-520 nm matching the sensitivity spectrum of the silicon photomultipliers (SiPMs). Recently we demonstrated the response of GAGG based detector to neutrons of Am(Pu)-Be sources [1,2]. Natural gadolinium is a mixture of six stable isotopes, two of which, 155Gd and 157Gd, have a high cross-section of the thermal neutron capture, 61000 and 254000 barns, respectively. Moreover, Gd nuclei possess a set of resonances providing resonance integral ~400 bn. The capture of the neutrons is accompanied by the emission of y-quanta of different energy, which can be detected in the same scintillation material. The role of the neutron capture by Gd is diminished when their energy reaches a few MeV, and an interaction with 69Ga,71Ga via new channels ((n,p) and (n, α) becomes dominating. Here we report on results of the measurement of neutrons obtained at the bombardment of the Pb 5 cm thick target with a 200 MeV proton beam. The capabilities of the Time-Off-Flight measurement at the short base 0.5m and Pulse Shape Discrimination of the different secondaries were demonstrated. Our results prove the GAGGbased detectors are promising to construct short-flight-base neutron spectrometers utilizing the PSD signals analysis.

- 1. M Korjik, KT Brinkmann, G Dosovitskiy, V Dormenev, A Fedorov, D Kozlov, Compact and Effective Detector of the Fast Neutrons on a Base of Ce-doped Gd3Al2Ga3O12 Scintillation Crystal., IEEE Transactions on Nuclear Science 66 (1)(2019), 536-540, 7
- 2. 2. A Fedorov, V Gurinovich, V Guzov, G Dosovitskiy, M Korzhik, V Kozhemyakin, A Lopatik, D Kozlov, V Mechinsky, V Retivov, Sensitivity of GAGG based scintillation neutron detector with SiPM readout, Nuclear Engineering and Technology 52(2020) 2306-2312

First author

Mikhail Korzhik

Email

mikhai.korjik@cern.ch

Collaboration / Activity

Crystal Clear Collaboration

Primary author: Prof. KORZHIK, Mikhail (NRC Kurchatov Institute)

Co-authors: Prof. BRINKMANN, Kai-Thomas (Giessen University); Dr BUZANOV, Oleg (FOMOS-MATERIALS); Dr DOSOVITSKIY, George (NRC Kurchatov Institute); Dr DORMENEV, Valery (Giessen University); Mr FEDOROV, Andrei (NRC Kurchatov Institute); Dr MECHINSKY, Vitaly (NRC Kurchatov Institute); KORNOUKHOV,

Vassily (FOMOS-MATERIALS); Mr KOZLOV, Dmitriy (INP BSU); Dr RETIVOV, Vasilli (NRS Kurchatov Institute-IREA); Mr VASILIEV, Vladimir (FOMOS-MATERIALS); Dr ZAUNICK, Hans-Georg (Giessen, University); ALENKOV, Vladimir (FOMOS-MATERIALS)

Presenter: Prof. KORZHIK, Mikhail (NRC Kurchatov Institute)

Session Classification: T12: Detector R&D and Data Handling

Track Classification: Detector R&D and Data Handling