New Results from the Silicon Vertex Detector of the Belle II Experiment

EPS – HEP Online Conference 2021, July 26

Luigi Corona - INFN and University of Pisa, on Behalf of the Belle II SVD Group [iuigi.corona@pi.infn.it]

Outline

- Introduction to the Silicon Vertex Detector (SVD) in the Belle II
 Experiment
- SVD description
- Overview of the operational experience, SVD performance and new results
- Summary and Conclusions

The Belle II Experiment

- Luminosity-frontier experiment, exploring new physics beyond the Standard Model
- Installed at the SuperKEKB collider: asymmetric e⁺e⁻ collisions at √s = 10.58 GeV with target luminosity of L ~6.5 · 10³⁵ cm⁻²s⁻¹
- Target Integrated Luminosity: 50/ab
- Operation with full detector started in 2019 up to now 210/fb have been collected

For more details about the Belle II experiment, please refer to <u>**C. Niebuhr plenary talk**</u> on Friday!

• Vertex Detector (VXD)

- Pixel Detector (PXD): 2-layers of DEPFET pixel sensors, innermost layer at 1.4 cm from the IP
- Silicon Vertex Detector (SVD): 4-layers of Double-Sided Silicon Strip Detector

Electromagnetic calorimeter Energy resolution < 4%

Central Drift Chamber Spatial resolution of 100 µm

e+ (4Ge)

7GeV

VD (strips)

DXDDXes

 K^{0} , and muon detector

Reconstruction eff. > 80%

Time-of-propagation PID

K eff 90%. π fake rate 5%

VXD

Aerogel PID

e, π , μ sep with 4σ

Silicon Vertex Detector (SVD)

SVD layout

Layer	Ladder/Layer	Sensor/Ladder	Slant angle
3	7	2	0^{o}
4	10	3	11.9^{o}
5	12	4	17.2^{o}
6	16	5	21.1^{o}

- \rightarrow Low material budget: 0.7%X₀ per layer
- Diamond sensors for radiation monitor and beam abort

• SVD roles:

- Extrapolate tracks to PXD (Region-Of-Interest, ROI)
 - PXD data reduction to cope with storage and bandwidth limits
- → Standalone tracking and PID using SVD dE/dx for low p_{τ} tracks

(rz) plane

physics acceptance: θ = 17-150 deg

SVD Strip Silicon Sensors

- Double-Sided Strip Detector (DSSD)
 - Provide 2D spatial information

AC-coupled strips on N-type substrate: Full depletion voltage: 20-60V Operation voltage: 100V

 Total: 172 sensors, 1.2 m² sensor area, 224k readout strips (1 intermediate floating strip between 2 readout strips)

Front-end and Chip-On-Sensor

- Front-end ASIC readout system: APV25 chip
 - ➔ Fast: 50 ns shaping time
 - Radiation hardness (> 100 Mrad)
 - → 128 channel inputs per chip
 - → Operated in multi-peak mode at 32 MHz
 - collisions every 4 ns and clock not synchronous with them as in CMS
 - 6 samples recorded, 3/6 samples in future to reduce data size
- Origami Chip-On-Sensor concept
 - Chips on each sensor to minimize length of the strip connected
 - smaller capacitance and noise
 - Chips on the same side of the sensor using wrapped flex to readout both strip sides (pitch adapters)
 - cooling only on one sensor side, with thin stainless steel pipes (bi-phase -20 °C CO₂)
 - \rightarrow Chips thinned to 100 μ m to reduce material budget

SVD Operational Experience and Particle Detection Performance

Operational Experience

- SVD was installed in 2018, and has been operated since 2019
- Reliable and smooth operation, without major problems
 - Total fraction of masked strips < 1%</p>
 - One APV25 chip (out of 1748) disabled in spring 2019, that was fixed by cable reconnection in summer 2019
- Performance of the detector are excellent
 - Average sensor hit efficiency for the four SVD layers is > 99% and stable with time

Signal Charge and Signal-to-Noise Ratio

- Signal charge released in SVD and normalized for the path length is similar in all sensors and matches the expectations
 - u/P side: charge is on average 21 ke⁻ in agreement with 24 ke⁻ expected for MIP (taking into account for ~15% uncertainty in APV25 gain calibration)
 - Signal loss of about 10% 30% on the v/N: due to the large pitch combined with the presence of a floating strip
- All 172 sensors have very good SNR with MPV between 13 and 30
 - Larger noise in u/P due to longer strip length (larger interstrip capacitance): SNR in v/N side > SNR in u/P side

EPS - HEP 2021. New Results from the Silicon Vertex Detector of the Belle II Experiment. Luigi Corona.

Cluster Position Resolution

- Preliminary cluster position resolution measured on data is $10 15 \mu m$ for the u/P side and $15 30 \mu m$ for the v/N side depending on the track incident angle and Layer
 - → Good results, but still room for improvement in particular in the u/P side
 - → Estimated from the residual of the cluster position with respect to the unbiased track extrapolation using $e^+e^- \rightarrow \mu^+\mu^-$ events. Effect of the track extrapolation error is subtracted
 - We are still optimizing the measurement to improve the accuracy, and tuning the simulation to improve data-simulation agreement

Hit Time

- Excellent hit time resolution: u/P side: ~2.9 ns, v/N side: ~2.4 ns, estimated from the residual of the SVD hit time with respect to the event time (t_0) provided by the CDC
- Currently we are running at low luminosity and background levels, however in future cluster time information will be crucial to reject off-time beam BG hits
 - Results of the study performed on data for BG rejection show we can achieve 45% BG cluster rejection with 99.5% efficiency
 - Additional studies on cut optimization for BG rejection ongoing

EPS – HEP 2021. New Results from the Silicon Vertex Detector of the Belle II Experiment. Luigi Corona.

Hadron skim

Beam Background & Radiation Effects On SVD

Beam Background

- Projection of hit occupancy at L = $8.0 \cdot 10^{35}$ cm⁻² s⁻¹ is about 4% in Layer-3
 - Estimated by MC scaled with data/MC ratio from BG studies in 2020
 - Corresponding to dose of ~300 krad/smy, and a 1-MeV neutron fluence of ~6.9 · 10¹¹ n_{eq}/cm²/smy smy = 10⁷ s

Beam Background and SVD Occupancy

- Beam BG irradiating SVD increases hit occupancy, and a large hit occupancy degrades SVD tracking performance: present limit is 3% in Layer-3
- \rightarrow With future BG rejection based on hit-timing cut, this limit can be relaxed by a factor \sim 2
- \rightarrow At present, averaged hit occupancy in Layer-3 is ~0.5%
- SVD robust against the radiation incidents
 - A huge beam loss in June 2019 created 10 new pinholes (broken AC capacitors on the sensors) in the whole SVD (224k strips)
 - > No new pinholes after that, though there have been similar beam losses several times

Integrated Dose

- SVD dose estimated by dose on diamond sensors: 60 krad in Layer-3 mid plane (the most exposed to radiation)
 - Dose estimate based on correlation between SVD occupancy and diamonds dose, with several assumption and large uncertainty (~50%)
 - → 1-MeV equivalent neutron fluence: ~1.4 · 10¹¹ n_{eq}/cm² in first ~2.5 years (assuming the ratio dose/n_{eq} fluence from MC, 2.3 · 10⁹ n_{eq}/cm²/krad)

Radiation Effect On Leakeage Current

- Sensor leakeage current increases linearly with dose, so with eq. neutron fluence proportional to that (as expected), consistent in all sensors and in reasonable agreement with expectation
 - Not affecting performance
 - Slope: 2-5 µA/cm²/Mrad with large variation due to temperature effects and dose spread among sensors in Layer
 - → Same order of magnitude as BaBar data: $1 \mu A/cm^2/Mrad$ at 20 °C

Nucl. Instrum. Meth. A 729 (2013) 615

Even after 10 Mrad, leakage current is not expected to significantly affect noise because of the short shaping time (50 ns) of APV25: noise dominated by sensor capacitance

Radiation Effect On Strip Noise

- Noise increase of 20 25% in Layer- $3 \rightarrow$ not affecting performance
 - Likely due to radiation effects on sensor surface
 - > Not linear as expected, due to increase in sensor interstrip capacitance for higher fixed oxide charge
 - Saturation seen on v/N side, and starting to be seen on u/P side as well

Radiation Effect On Depletion Voltage

- v/N-side strip noise drops to a minimum level at the full depletion
 - Depletion develops from u/P side to v/N side, so v/N side strips become insulated only when the ntype bulk is fully depleted
 - Over-depletion bias still decrease noise slightly, because it reduces the electron accumulation layer present on the v/N side surface
- Noise-HV scan to monitor the full depletion voltage
 - → No changes expected from July 2020 consistently with the low integrated neutron fluence expected

Summary and Conclusions

- SVD has been taking data in Belle II since March 2019, with smooth and reliable operation since the beginning
- Some effects of radiation damage started to be seen, not affecting performance
- Excellent SVD performance confirmed on experimental data
 - Some room for improvement in reconstruction and tuning of simulation
- Hit time resolution: P-side ~2.9 ns, N-side ~2.4 ns
 - Hit-timing selection to reject off-time background hits never used before
 - Currently we are running with low luminosity and background level, but it will be crucial with large luminosity and background
 - The limit on SVD occupancy of 3% to keep good tracking performance will be relaxed by a factor ~2 (studies still ongoing)
- Ready to cope with increased beam background
 - Hit-timing selection to reject off-time background hits
 - → 3/6 mixed data acquisition mode of the APV25 to reduce data size

Thank you for the attention!

Backup Slides

Construction, assembly, installation

Hit Efficiency

Performance of the detector is excellent

- Average sensor hit efficiency for the four SVD layers is > 99%
- Very few sensors with 98 98.5% due to production defects
- Stable with time

Average sensor hit efficiency

layer	$\varepsilon(u/P)(\%)$	$\varepsilon(v/N)(\%)$
3	99.83 ± 0.01	99.48 ± 0.03
4	99.69 ± 0.03	99.68 ± 0.03
5	99.66 ± 0.03	99.77 ± 0.04
6	99.31 ± 0.08	99.58 ± 0.06

Signal Charge

Signal charge released in the SVD depends on the track incident angle
The charge is significantly larger for sensor in the FW and BW position

- Normalize for path length
 - → E · d/ℓ is similar in all sensors and matches the expectations
- Normalized cluster charge is on average 21 ke⁻ on the u/P side (with uncertainty of ~15% in APV25 gain calibration)
 - In fair agreement with expected MPV for MIP signal of 24 ke⁻
- Signal loss of about 10% 30% on the v/N: due to the large pitch combined with the presence of a floating strip

Signal-to-Noise Ratio (SNR)

- Larger noise in u/P due to longer strip length (larger interstrip capacitance)
- SNR depends on the charge and on the noise
 - Noise of u/P side > noise of v/N side
 - Signal depends on sensor position, due to the track incident angle

Equivalent Noise Charge (ENC)

Sensor position/type	<u>u/P side ENC (e^{-})</u>	v/N side ENC (e^{-})
Layer 3 (HPK small)	930	630
Layer 4/5/6 Origami (HPK large)	958	510
Layer 4/5/6 BWD (HPK large)	790	680
Layer 4/5/6 FWD (Micron wedge)	740	640

SNR in v/N side > SNR in u/P side

All 172 sensors have very good SNR with MPV between 13 and 30

SVD Occupancy

SVD measured occupancy in fair agreement with simulation

- Random trigger occupancy extrapolation 0.22% (LER current = 840 mA, n° bunches = 978, no injection BG included)
- Measured poisson trigger occupancy (w/o injection veto) ~0.25%

total

- Beam BG level during operation under control at present
 - Physics trigger occupancy higher than random trigger occupancy
 - → Averaged hit occupancy in Layer-3 is ~0.5% (<< limit of 3%)</p>

Integrated Dose

- SVD dose estimated by dose on diamond sensors: 60 krad in Layer-3 mid plane (the most exposed to radiation)
 - Dose estimate based on correlation between SVD occupancy and diamonds dose
 - Use of Poisson trigger data without injection veto (data available from 2021 runs)
 - Large uncertainty (~50%): Poisson trigger data not available for runs before December 2020
 - → 1-MeV equivalent neutron fluence: ~1.4 · 10¹¹ n_{eq}/cm² in first ~2.5 years (assuming the ratio dose/n_{eq} fluence from MC, 2.3 · 10⁹ n_{eq}/cm²/krad)

Hit Time Determination: CoG3 and ELS3

• CoG3

 \rightarrow a, is the ADC sample and Δ t is the APV clock ~ 31 ns

$$T_{\text{SVD;raw}} = \frac{\sum_{i=0}^{2} a_i \cdot i\Delta t}{\sum_{i=0}^{2} a_i}$$

ELS3

- Approximate the signal waveform with CR-RC shaper response
- Fit with least squares method, analitically solvable, to get T_{SVD;raw}

$$a(t) = A \frac{t - T_{\text{SVD;raw}}}{\tau} \exp\left(1 - \frac{t - T_{\text{SVD;raw}}}{\tau}\right)$$

- → Shaping time constant τ = 55 ns
- Calibration of the raw SVD time performed exploiting the correlation with the event time t_o provided by the CDC

EPS - HEP 2021. New Results from the Silicon Vertex Detector of the Belle II Experiment. Luigi Corona.

Select the best 3 samples out of the 6

