Vector boson associated with jets in CMS

Qun Wang DESY On behalf of the CMS Collaboration Hamburg, 27 July 2021

European Physical Society conference on high energy physics 2021

Outline

- Introduction
- V+jets measurements
 - Precision measurement of the Z invisible width at 13 TeV (SMP-18-014)
 - Multi-differential Z+jets cross sections at 13 TeV
 (SMP-19-009)
 - Azimuthal correlations in Z+jets at 13 TeV
 (SMP-21-003)
- Summary

Introduction

- Z+jets provides a sensitive evaluation of the accuracy of QCD modeling
 - Important for modeling the production mechanism involved in the Higgs boson and new physics searches.
- This process is a standard candle at LHC:
 - High cross section
 - Almost background free
 - clean signature
- It is a dominant background in many SM processes, such as Higgs production, $t\bar{t}$ production and for searches beyond SM.

Precision measurement of the Z invisible width at 13 TeV

SMP-18-014

- Goal: turns generic jets+MET dark matter search on its head to make precise measurement of Z invisible width.
- Z invisible width extracted from ratio of measured cross sections of Z(vv)+jets to $Z(\ell \ell)$ +jets.

$$\Gamma(Z \to \nu \bar{\nu}) = \frac{\sigma(Z + \text{jets})\mathcal{B}(Z \to \nu \bar{\nu})}{\sigma(Z + \text{jets})\mathcal{B}(Z \to \ell \ell)} \Gamma(Z \to \ell \ell)$$

- Using 36.3 fb-1 of 13 TeV data
 - Jets+MET topology to select Z->vv events
 - μμ+jets and ee+jets to select Z->*ℓ* events
 - μ v+jets, ev+jets and τ h v+jets for W+jets
- Backgrounds:
 - W+jets events, estimated using data driven approach and ℓ +jets control regions.
 - QCD background is estimated using data driven.
 - Contribution from $\gamma^* \longrightarrow \ell \ell$ and interference between $\gamma^* \longrightarrow \ell \ell$ and Z-> $\ell \ell$ is evaluated.

Precision measurement of the Z invisible width at 13 TeV SMP-18-014

- Invisible width extracted from simultaneous likelihood fit to the jets+MET, *ll*+jets, *l*+jets regions
- The transfer factor estimating the W+jets background is implemented as a global unconstrained parameter scaling the W+jets process in jets+MET and *l*+jets.
- Systematic uncertainties are treated as nuisance parameters, modeled with Gaussian priors.

Precision measurement of the Z invisible width at 13 TeV SMP-18-014

Systematic uncertainties:

Source	Uncertainty (%)	
	up	down
rZJetsToNuNu	3.21	-3.15
muonIdIsoMediumSyst	2.05	-2.03
jesTotal	-1.88	1.93
eleIdIsoMediumSyst	1.53	-1.52
pileup	1.02	-0.93
eleIdIsoMediumStat	0.98	-0.99
eleTrig	0.76	-0.69
tauIdVLoose	0.63	-0.71
metTrigMonojetSyst	-0.70	0.70
metTrigDoubleMuonSyst	0.56	-0.56
metTrigSingleMuonSyst	0.44	-0.46
d2kqcd	0.38	-0.40
jerSF	-0.38	0.37
muonIdIsoMediumStat	0.33	-0.31
eleRecoSyst	0.30	-0.30
d3kewz	-0.30	0.29
lhePdfWeight	0.15	-0.20
lheScaleWeight	0.17	-0.18
eleRecoStat	0.17	-0.17
d1kqcd	0.14	-0.16
dkmix	0.14	-0.15
qcdSystB1	-0.14	-0.14
d2keww	0.12	-0.13
qcdSystB2	-0.13	-0.13
prefiring	-0.11	0.10
qcdSystB0	0.09	0.09
d2kewz	-0.08	0.06
muonRecoSyst	0.06	-0.07
qcdSystB3	-0.05	-0.05
d3keww	0.05	-0.05

- First direct measurement of invisible Z width at CMS
- Precision competitive with LEP direct measurement
- Most precise single direct measurement

Multi-differential Z+jets cross sections at 13 TeV

SMP-19-009

- Z+jets provides a sensitive evaluation of the accuracy of QCD modeling
- Using 35.9 fb-1 data to measure the differential cross section:
 - Double differential of Z pT and |y|
 - Jet multiplicity up to 8 jets
 - Transverse momentum and rapidities of 5 jets
 - Double differential of leading jet pT and |y|
 - Angular variables...

Event selections:

```
Opposite sign leptons with pT > 30/20GeV, |\eta| < 2.4
|mℓℓ −mZ |< 20GeV
Medium ID (+ 0.15 Isolation for muon)
AK4PF chs jets with pT > 30GeV, |\eta| < 2.4
Jets pass Loose ID and Tight WP for PU MVA
\Delta R (\ell, jets) < 0.4
```


7

DESY, Vector boson associated with jets in CMS | Qun Wang, 27 July 2021

Multi-differential Z+jets cross sections at 13 TeV

SMP-19-009

Predictions:

- Madgraph5 NLO (Labeled NLO MG 5 aMC)
- Madgraph5 LO (Labeled LO MG 5 aMC)
- GENEVA (NNLO + NNLL resummation)

- All the predictions are in agreement with data.
- The NLO prediction provides a better description than LO and GENEVA for double differential cross sections.

DESY. |Vector boson associated with jets in CMS | Qun Wang, 27 July 2021

Azimuthal correlations in Z+jets at 13 TeV

SMP-21-003

- Sensitive to higher-order corrections and soft gluon resummation.
- At small ZpT, soft-gluon resummations and nonperturbative contributions are essential.
- At high Z pT, Z+jet production is dominant with significant corrections coming from QCD processes.
- Interest in Parton Branching (PB) predictions: (more in Armando's talk)
 - PB method was very successful describing inclusive DY pT spectrum
 - Transverse Momentum Dependent parton distribution(TMD) and corresponding TMD parton shower are tied together, no extra free parameters.

Measured observables:

- Jet multiplicity in pT(Z) bins
- Azimuthal correlation between Z and leading jet in pT(Z) bins
- Azimuthal correlation between two leading jet in pT(Z) bins

Azimuthal correlations in Z+jets at 13 TeV

SMP-21-003

- Good agreement between data and the MG5_aMC NLO PY8 is observed.
- In the low pT(Z) region, the Z boson is only weakly correlated with the leading jet, and the distribution is flat.
- In the large pT(Z) region, Z boson is highly correlated with the leading jet, and peaks in the backto-back region.
- The contribution from MPI is about 40% for low pT(Z) region, as shown with MG5aMC no MPI DESY. |Vector boson associated with jets in CMS | Qun Wang, 27 July 2021

Ζ

A Crown

q

Ζ

 \sim

g

Azimuthal correlations in Z+jets at 13 TeV

Predictions:

Madgraph5 NLO MPI

SMP-21-003

- Madgraph5 NLO noMPI
- GENEVA (NNLO + NNLL resumma
- MCatNLO-CA3 (Z+1) NLO
- MCatNLO-CA3 (Z+2) NLO

• The contribution from higher order matrix elements become important as seen from the comparison with MG5aMC + CA3 (Z+2) NLO.

 One could see the missing MPI contribution in MG5aMC+CA3 (Z+1) NLO predict, when compared to GENEVA NNLO including MPI at low pT (Z).

DESY. |Vector boson associated with jets in CMS | Qun Wang, 27 July 2021

Summary

- Wide range V+jets results
 - First direct measurement of invisible Z width at a hadron collider.
 - Multi-differential Drell-Yan production cross section measurements
 - NLO modelling doing well with Z/γ +jets
 - At low Z pT, the jet production is the dominant process for Z+jets process, and the Z boson could be seen as a higher order EW correction.
 - The prediction using PB-TMDs come close to the measuements, with the parameters of the initial state parton shower fixed by TMD.

More results will come in the near future.

Thanks a lot for your attention!

Thank you

Precision measurement of the Z invisible width at 13 TeV

SMP-18-014

- Goal: turns generic jets+MET dark matter search on its head to make precise measurement of Z invisible width.
- Z invisible width extracted from ratio of experimentally measured cross sections of Z(vv) +jets to Z(*ll*)+jets and LEP measured partial width for Z->*ll*.

$$\Gamma(Z \to \nu \bar{\nu}) = \frac{\sigma(Z + \text{jets})\mathcal{B}(Z \to \nu \bar{\nu})}{\sigma(Z + \text{jets})\mathcal{B}(Z \to \ell \ell)} \Gamma(Z \to \ell \ell)$$

- Using 36.3 fb-1 of 13 TeV data
 - Jets+MET topology to select Z->vv events
 - $\mu\mu$ +jets and ee+jets to select Z-> $\ell\ell$ events
 - μ v+jets, ev+jets and τ h v+jets for W+jets
- Backgrounds:
 - W+jets events, estimated using data driven approach and ℓ +jets control regions.
 - QCD background is estimated using data driven.
 - Contribution from $\gamma^* \longrightarrow \ell \ell$ and interference between $\gamma^* \longrightarrow \ell \ell$ and Z-> $\ell \ell$ is evaluated.

Precision measurement of the Z invisible width at 13 TeV

SMP-18-014

Baseline

MET filters $\begin{array}{l} \text{MET filters} \\ p_{\text{T}}^{\text{miss}} > 200 \, \text{GeV} \\ |p_{\text{T,PF}}^{\text{miss}} - p_{\text{T,Calo.}}^{\text{miss}}|/p_{\text{T}}^{\text{miss}} < 0.5 \\ \text{Lead jet } p_{\text{T}} > 200 \, \text{GeV} \text{ and } |\eta| < 2.4 \text{ and } 0.1 < \text{Ch. Had. EF} < 0.95 \\ \text{Veto jets } p_{\text{T}} > 40 \, \text{GeV} \text{ and } |\eta| \geq 2.4 \\ \text{Loose photon veto } p_{\text{T}} > 25 \, \text{GeV} \text{ and } |\eta| < 2.5 \\ \text{Medium CSVV2 b-jet veto } p_{\text{T}} > 40 \, \text{GeV} \text{ and } |\eta| < 2.4 \end{array}$

Jets+MET Baseline Loose muon veto $p_T > 10$ GeV and $ \eta < 2.5$ Veto electron veto $p_T > 10$ GeV and $ \eta < 2.5$ Very loose tau veto $p_T > 20$ GeV and $ \eta < 2.3$ min $[\Delta \phi(j_{1,2,3,4}, p_T^{miss})] > 0.5$	Double MuonBaseline2 medium muons $p_{\rm T} > 25$ GeV and $ \eta < 2.4$ Veto electron veto $p_{\rm T} > 10$ GeV and $ \eta < 2.5$ Very loose tau veto $p_{\rm T} > 20$ GeV and $ \eta < 2.3$ $71 < M_{\mu\mu} < 111$ GeVmin $[\Delta \phi(j_{1,2,3,4}, p_{\rm T}^{\rm miss})] > 0.5$	Double ElectronBaseline2 medium electrons $p_T > 30$ GeV and $ \eta < 2.4$ Loose muon veto $p_T > 10$ GeV and $ \eta < 2.5$ Very loose tau veto $p_T > 20$ GeV and $ \eta < 2.3$ $71 < M_{ee} < 111$ GeV $min[\Delta\phi(j_{1,2,3,4}, p_T^{miss})] > 0.5$
Single Muon Baseline 1 medium muon $p_{\rm T} > 25$ GeV and $ \eta < 2.4$ Veto electron veto $p_{\rm T} > 10$ GeV and $ \eta < 2.5$ Very loose tau veto $p_{\rm T} > 20$ GeV and $ \eta < 2.3$ $30 \le M_{\rm T}(\mu, p_{\rm T,PF}^{\rm miss}) < 125$ GeV min $[\Delta\phi(j_{1,2,3,4}, p_{\rm T}^{\rm miss})] > 0.5$	$\begin{array}{l} \textbf{Single Electron} \\ \textbf{Baseline} \\ 1 \mbox{ medium electron } p_{\rm T} > 30 \mbox{ GeV and } \eta < 2.4 \\ \mbox{ Loose muon veto } p_{\rm T} > 10 \mbox{ GeV and } \eta < 2.5 \\ \mbox{ Very loose tau veto } p_{\rm T} > 20 \mbox{ GeV and } \eta < 2.3 \\ p_{\rm T,PF}^{\rm miss} > 100 \mbox{ GeV} \\ \mbox{ 30 } \leq M_{\rm T}(e, p_{\rm T,PF}^{\rm miss}) < 125 \mbox{ GeV} \\ \mbox{ min}[\Delta \phi(j_{1,2,3,4}, p_{\rm T}^{\rm miss})] > 0.5 \end{array}$	Single TauBaseline1 tight tau $p_T > 40$ GeV and $ \eta < 2.3$ Loose muon veto $p_T > 10$ GeV and $ \eta < 2.5$ Veto electron veto $p_T > 10$ GeV and $ \eta < 2.5$ min $[\Delta \phi(j_{1,2,3,4}, p_T^{miss})] > 0.5$

QCD sideband

Baseline

Loose muon veto $p_{\rm T} > 10~{\rm GeV}$ and $|\eta| < 2.5$ Veto electron veto $p_{\rm T} > 10~{\rm GeV}$ and $|\eta| < 2.5$ Very loose tau veto $p_{\rm T} > 20~{\rm GeV}$ and $|\eta| < 2.3$ min[$\Delta \phi(j_{1,2,3,4}, p_{\rm T}^{\rm miss})$] ≤ 0.5

15

Precision measurement of the Z invisible width at 13 TeV SMP-18-014

• Invisible width extracted from simultaneous likelihood fit to the jets+MET, *ll*+jets, *l*+jets regions

DESY. |Vector boson associated with jets in CMS | Qun Wang, 27 July 2021

Multi-differential Z+jets cross sections at 13 TeV

SMP-19-009

 Clean event selection with percent level background and well understood recoil object with the Z boson

Multi-differential Z+jets cross sections at 13 TeV SMP-19-009

- All the predictions are in agreement with data.
- The NLO prediction provides a better description than LO and GENEVA for double differential cross sections.

Results-dPhi(jet1, jet2)

Z pT < 10 GeV

Z pT (30, 50) GeV

Z pT > 100 GeV

- A strong correlation between the two leading jets is observed at small Z pT, indicating that at low Z pT the process is dominated by jet production and the Z boson is radiated as a higher order EW correction.
- At large Z pT the process is dominated by Z+jet production, with higher order QCD corrections in form of additional jets.
- The contribution from MPI is significant especially at small Z pT, and small dPhi(j1,j2). DESY. |Vector boson associated with jets in CMS | Qun Wang, 27 July 2021

36.3 fb⁻¹ (13 TeV) Heasurement 36.3 fb⁻¹ (13 TeV) dơ/d∆¢(j,j_) [pb] MG5_aMC + CA3 (Z+j NLO) * 1.2 CMS 10² MG5_aMC + CA3 (Z+j NLO) * 1.2 CMS Preliminarv MG5_aMC + CA3 (Z+jj NLO) * 1.2 Preliminary aMC + CA3 (Z+jj NLO) * 1.2

Results-dPhi(jet1, jet2)

Z pT < 10 GeV

- At larger dPhi (j1, j2) region, the measurement is reasonably well described by MG5aMC + CA3 (Z+2) NLO, while it falls at lower dPhi region presumably because of missing MPI contribution.
- The GENEVA NNLO prediction is below the measurement, and it is similar to MG5aMC+CA3 (Z+1) NLO predict prediction.

DESY, Vector boson associated with jets in CMS | Qun Wang, 27 July 2021

q Ζ Ζ $\overline{\mathbf{M}}$ a A Com 000000

36.3 fb⁻¹ (13 TeV)

Preliminary

CMS

[dd]

Z pT (30, 50) GeV

Measurement

Z pT > 100 GeV

Heasurement

MG5_aMC + CA3 (Z+j NLO) * 1.2

/IG5_aMC + CA3 (Z+jj NLO) * 1.2