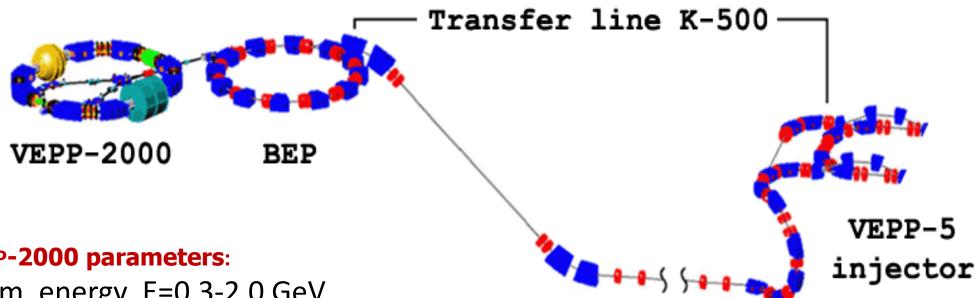


Study of e^+e^- annihilation to hadrons with SND at VEPP-2000

Vladimir Druzhinin for SND Collaboration Budker INP, Novosibirsk, Russia July 29, 2021

EPS-HEP2021

SND detector

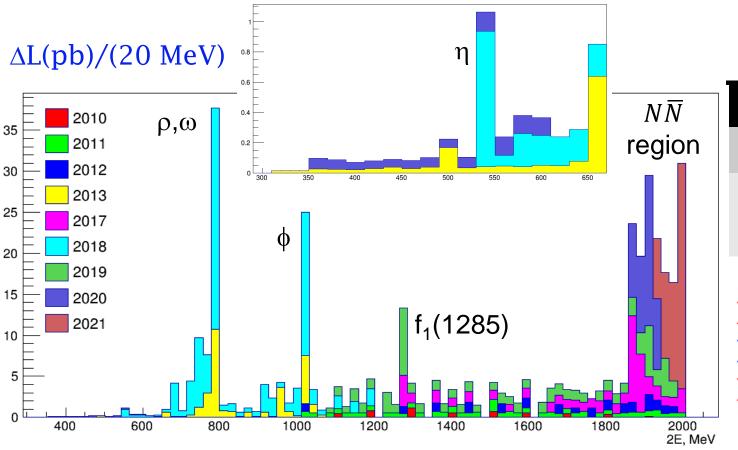

1 – beam pipe, 2 – tracking system, 3 – aerogel Cherenkov counter, 4 - NaI(Tl) crystals, 5 - phototriodes, 6 - iron muon absorber, 7-9 - muon detector, 10 - focusing solenoids.

SND collected data at the VEPP-2M (1996-2000) and VEPP-2000 (2010-2013,2016-...)

Main physics task of SND is study of all possible processes of e⁺e⁻ annihilation into hadrons below 2 GeV.

- ✓ The total hadronic cross section, which is calculated as a sum of exclusive cross sections.
- ✓ Study of hadronization (dynamics of exclusive processes).
 - Properties of excited vector mesons of the ρ , ω , ϕ families
 - Development of MC event generator for $e^+e^- \rightarrow$ hadrons below 2 GeV.

VEPP-2000 e⁺e⁻ collider

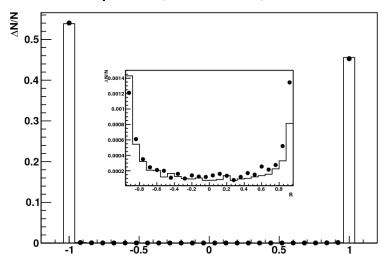

VEPP-2000 parameters:

- c.m. energy E=0.3-2.0 GeV
- circumference 24.4 m
- round beam optics
- Luminosity at E=1.8 Γ∋B 1×10^{32} cm⁻² sec⁻¹ (project) 4×10^{31} cm⁻² sec⁻¹ (achieved)
- Two detectors: SND and CMD-3

2010-2013 - experiments, 70 pb⁻¹2013-2016 – upgrade, new injector 2016- ... – experiments, 300 pb⁻¹

SND data

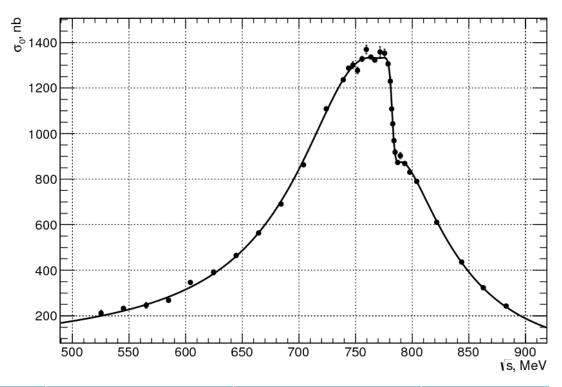
~20 hadronic processes are currently under analysis



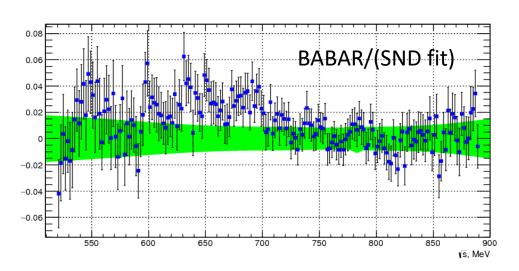
	Below ϕ	Near ϕ	Above ϕ
IL, pb ⁻¹	77	31	259.0
E _{cm} , GeV	0.30- 0.97	0.98- 1.05	1.05- 2.00

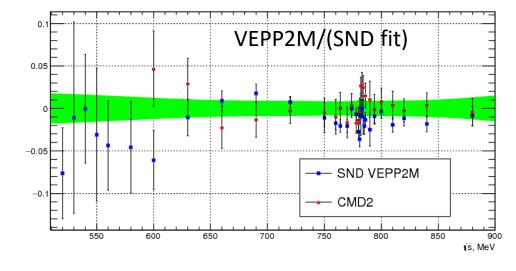
 e/π separation parameter

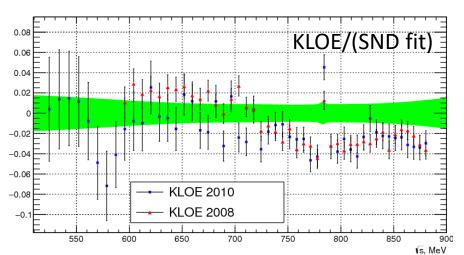
$$e^+e^- \rightarrow \pi^+\pi^-$$


JHEP 2021,113 (2021)

The analysis is based on 4.7 pb⁻¹ data recorded in 2013 (1/10 full SND data set)

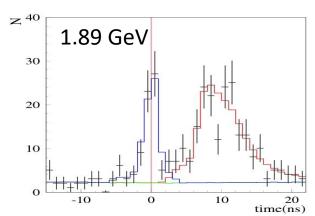

Systematic uncertainty on the cross section (%)

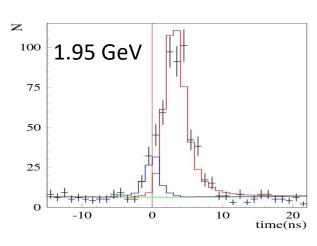

Source	< 0.6 GeV	0.6 - 0.9 GeV
Trigger	0.5	0.5
Selection criteria	0.6	0.6
e/π separation	0.5	0.1
Nucl. interaction	0.2	0.2
Theory	0.2	0.2
Total	0.9	0.8



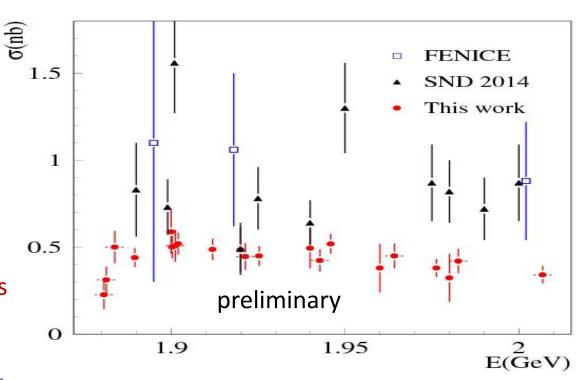
	SND @ VEPP-2000	SND @ VEPP-2M	PDG
M _ρ , MeV	775.4±0.5±0.4	775.6±0.4±0.5	775.3±0.3
$\Gamma_{\!\scriptscriptstyle ho}$, MeV	145.7±0.7±1.0	146.1±0.8±1.5	147.8±0.9
$B_{\text{pee}} \times 10^5$	4.89±0.2±0.4	4.88±0.2±0.6	4.72±0.5
Β _{ωππ} , %	1.77±0.08±0.02	1.66±0.08±0.05	1.53±0.06

$e^+e^- \rightarrow \pi^+\pi^-$

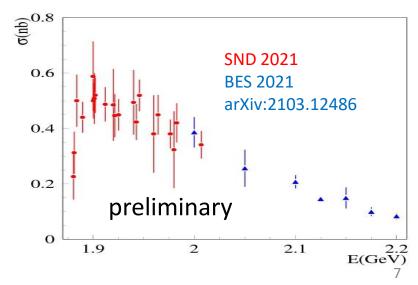




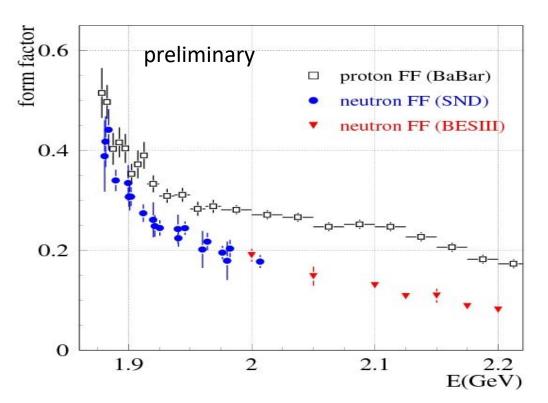
$$0.53 < \sqrt{s} < 0.88 \, \text{GeV}$$


	$a_{\mu}(\pi^+\pi^-) imes 10^{10}$
SND & VEPP-2000	$411.8 \pm 1.0 \pm 3.7$
SND & VEPP-2M	$408.9 \pm 1.3 \pm 5.3$
BABAR	$414.9 \pm 0.3 \pm 2.1$

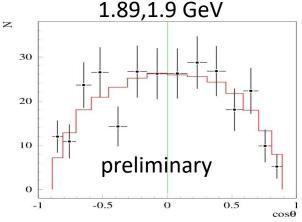
$e^+e^- \rightarrow n\bar{n}$

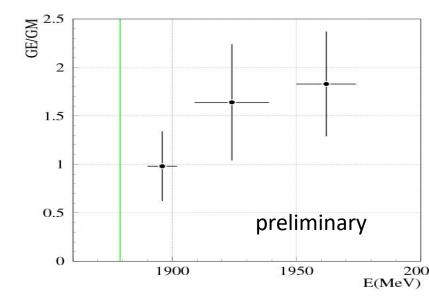


- ➤ This process near threshold was previously measured by FENICE and SND using the 2011-2012 dataset.
- The new measurement is based on the 2017, 2019 data and uses time measurement in the calorimeter.
- The time distribution is fitted by a sum of distributions for signal, cosmic background, and beam + e⁺e⁻ annihilation background.
- Our new result is lower than the previous. The reasons are underestimated beam background and incorrect MC simulation.

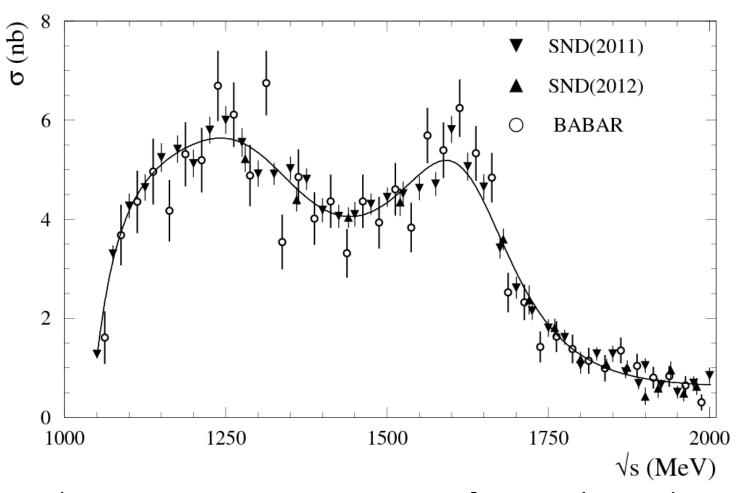

The systematic uncertainty is 10%

Neutron electromagnetic form factors

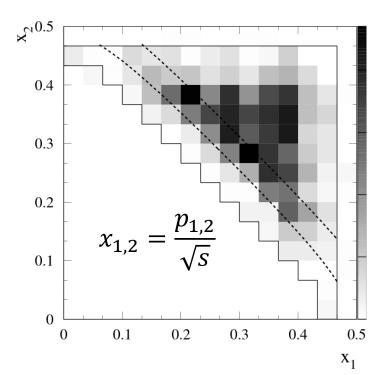

From the measured cross section, we determine effective form factor

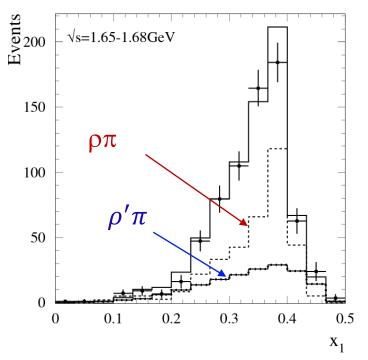

$$|F|^2 = \frac{|G_M|^2 + \frac{2m_n^2}{s}|G_E|^2}{1 + \frac{2m_n^2}{s}}$$

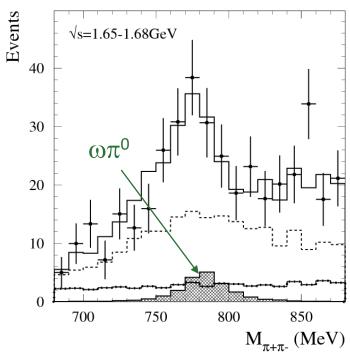
$$\sigma(e^{+}e^{-} \to n\bar{n}) = \frac{\alpha^{2}\beta}{4s} \left[|G_{M}|^{2} (1 + \cos^{2}\theta) + \frac{4m_{n}^{2}}{s} |G_{E}|^{2} \sin^{2}\theta \right]$$


From analysis of the antineutron polar-angle distribution we determine the ratio of the form factors

$e^+e^- \rightarrow \pi^+\pi^-\pi^0$ cross section

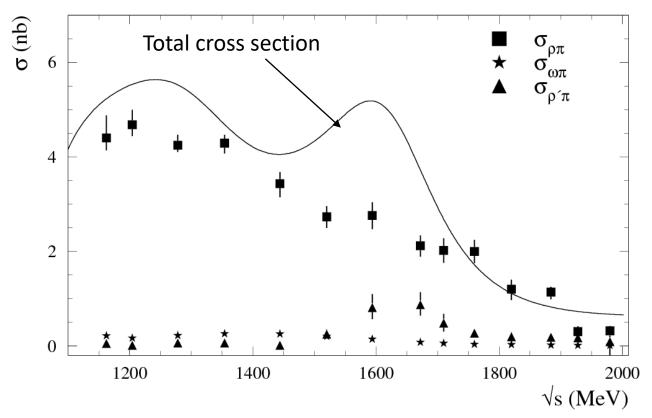

EPJ C 80 (2020) 993




- ✓ Both SND measurements are consistent with each other and with the the BABAR measurement.
- ✓ Two peaks in the cross section corresponds to the) $\omega' \equiv \omega(1420$ and $\omega'' \equiv \omega(1650)$ resonances.
- ✓ The systematic uncertainty on the cross section is 4.4%.

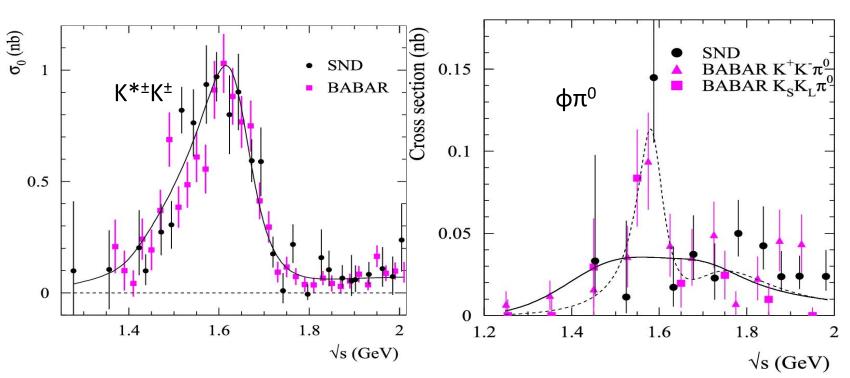
The previous SND measurement [J. Exp. Theor. Phys. 121, 27 (2015)] is based on 2011 data set. The 2012 data set has been added.

$e^+e^- \to \pi^+\pi^-\pi^0$ dynamics



- We analyze the two-dimensional distribution of the charged-pion momenta and the $\pi^+\pi^-$ mass spectrum.
- These distributions are fitted with a model including the $\rho\pi$, $\rho'\pi\equiv\rho(1450)\pi$, and $\omega\pi^0$ states.
- A significant fraction of the $ho'\pi$ intermediate state is observed in the energy region 1.55-1.75 GeV.

$e^+e^- \rightarrow \pi^+\pi^-\pi^0$ dynamics

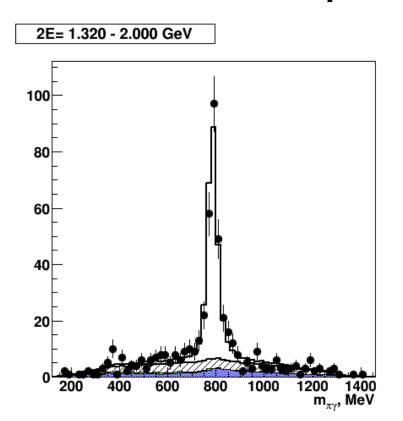


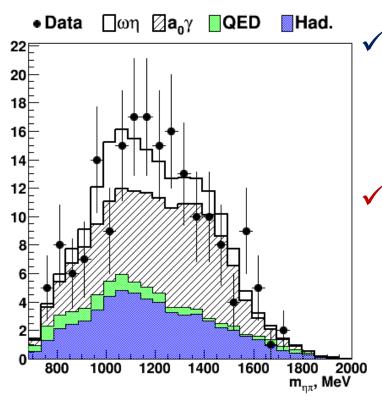
- ✓ The isovector intermediate state $ωπ^0$ gives sizable (up to 20%) contribution to the $e^+e^- → π^+π^-π^0$ cross section.
- ✓ The cross section for the intermediate state ρ'π differs significantly from zero in the range 1.55 1.75 GeV, where the resonance ω'' is located.
- ✓ In the ρπ cross section the resonance structure near 1650 MeV is not seen.

We conclude that the $\rho'\pi$ intermediate state gives a significant contribution to the decay $\omega'' \to \pi^+\pi^-\pi^0$, and that the $\omega' \to \pi^+\pi^-\pi^0$ decay is dominated by the $\rho\pi$ intermediate state.

$e^{+}e^{-} \to K^{+}K^{-}\pi^{0}$

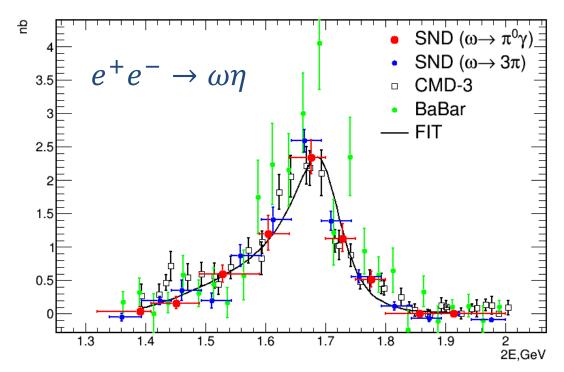
EPJ C **80** (2020) 1139

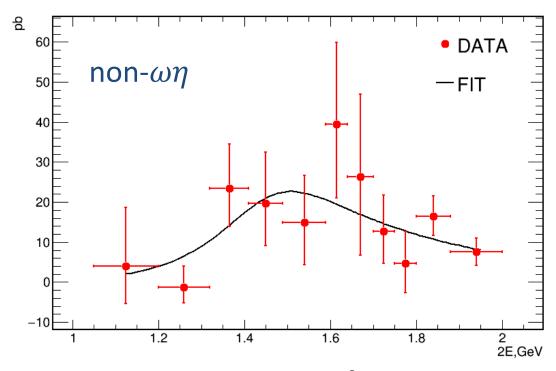



- The analysis is based on 26 pb⁻¹ data recorded in the c.m. energy range 1.27 2 GeV.
- The cross sections for the $K^{*\pm}K^{\mp}$ and $\phi\pi^0$ intermediate states are measured separately.
 - The $e^+e^- \rightarrow K^{*\pm}K^{\mp}$ cross section is dominated by the $\phi' \equiv \phi(1680)$ resonance.

12

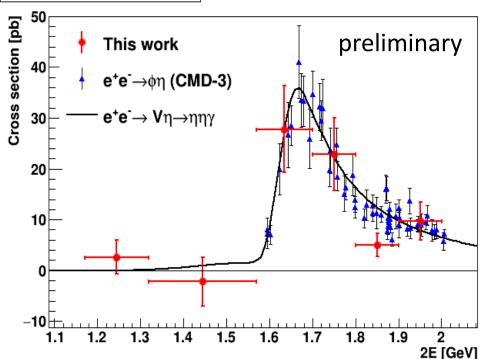
The isovector process $e^+e^- \to \phi\pi^0$ is suppressed by the Okubo-Zweig-Iizuka (OZI) rule. Three measurements of the cross section are fitted simultaneously. The fit by a sum of the ρ' and ρ'' contributions cannot describe data near 1.6 GeV. The inclusion of an unknown resonance with m=1585±15 MeV and Γ =75±30 MeV improves fit. The significance of the structure is about 3σ .


$$e^+e^- \rightarrow \eta \pi^0 \gamma$$



- ✓ There is a significant contribution of the ωη intermediate state, which is seen as a peak in the π⁰γ mass distribution.
- ✓ The non-ωη signal is observed with significance of 5.6σ. It has a wide $\eta \pi^0$ mass distribution and may arise from the processes $e^+e^- \rightarrow a_0(1450)\gamma$ and $a_2(1320)\gamma$.
- The process $e^+e^- \to \eta \pi^0 \gamma$ above 1.05 GeV is studied for the first time.
- Data set with IL≈100 pb⁻¹ recorded in 2010-2012 and 2017
- The five-photon final state is used.

$e^+e^- \rightarrow \eta \pi^0 \gamma$


The measured $e^+e^-\to\omega\eta$ cross section is in good agreement with the SND and CMD-3 measurements in the $\omega\to\pi^+\pi^-\pi^0$ decay mode.

The non-VP $e^+e^- \rightarrow \eta \pi^0 \gamma$ process is observed with significance of 5.6 σ . This is the first measurement of this cross section.

$e^+e^- \to \eta\eta\gamma$

- The $e^+e^- \rightarrow \eta \eta \gamma$ cross section is measured for the first time in the energy range 1.17 2.0 GeV.
- The main intermediate state is φη.
- The measured cross section is consistent with CMD-3 result on $e^+e^- \rightarrow \varphi \eta$, $\varphi \rightarrow K^+K^-$.
- The contribution from intermediate states other than φη is not seen.

preliminary

2E, GeV	95% CL Upper limit,pb
1.17-1.32	9
1.32-1.57	5
1.57-1.80	11
1.80-2.00	4

Upper limits on possible contribution of radiative intermediate states ($f_0(1500)\gamma$, $f'_2(1525)\gamma$) is set.

Summary

- ✓ The SND detector accumulated 370 pb⁻¹ of integrated luminosity in the energy range 0.3 2 GeV.
- ✓ The $e^+e^- \rightarrow \pi^+\pi^-$ cross section has been measured in the energy range 0.53-0.88 GeV with a systematic uncertainty better than 1%.
- ✓ The accuracy of the $e^+e^- \rightarrow n\bar{n}$ measurement has been significantly improved.
- ✓ The dynamics of the process $e^+e^- \to \pi^+\pi^-\pi^0$ has been studied in the energy range 1.15-2.0 GeV.
- ✓The process $e^+e^- \to K^+K^-\pi^0$ has been studied in the $K^{*\pm}K^{\mp}$ and $\phi\pi^0$ intermediate states.
- ✓ Rare radiative processes $e^+e^- \to \eta\pi^0\gamma$ and $\eta\eta\gamma$ have been measured in the energy range 1.05-2 GeV.