

Recent studies about XYZ particles at BESIII

@EPS-HEP Conference 2021

Johannes Bloms, WWU Münster

Graduiertenkolleg 2149 Research Training Group

wissen.leben

The charmonium and charmonium-like sector

The BESIII experiment

Recent studies about XYZ particles at BESIII in the reactions

$$e^+e^-
ightarrow \phi \Lambda \overline{\Lambda}$$

 $e^+e^-
ightarrow \eta \psi(2S)$
 $e^+e^-
ightarrow e^+e^-
ightarrow \eta_c + \pi^+\pi^-\pi^0, \pi^+\pi^-, \pi^0 \eta_s$
 $e^+e^-
ightarrow e^+e^-
ightarrow K^+ (D_s^-D^{*0} + D_s^{*-}D^0)$
 $e^+e^-
ightarrow p\overline{p}\eta, p\overline{p}\omega$

$\underline{\underline{}}^{\pm} \underline{\underline{}}_{\text{MUNSTER}} \quad \text{The heavy charmonium sector } c\overline{c}$

Nonrel. potential model to derive spectrum

Predicted by theory and (many) **confirmed** by experiment

$$C \xrightarrow{L} S = S_1 + S_2$$

$$J = L + S$$

$$F = (-1)^{L+1}$$

$$C = (-1)^{L+5}$$

$\underline{\underline{}}^{\pm} \underline{\underline{}}^{wwu} \quad \text{The heavy charmonium sector } c\overline{c}$

Nonrel. potential model to derive spectrum

Predicted by theory and (many) **confirmed** by experiment

 $m > m_{D\overline{D}}$: OZI-allowed open charm decays

$\underline{=}^{\pm} \underbrace{wwv}_{\text{MUNSTER}} \quad \text{The heavy charmonium sector } c\overline{c}$

Unexpected overpopulation measured

 $\psi(4260)$ discovered by BABAR, observed at BESIII 2 coupling to $J/\psi\pi^+\pi^-$

 $Z_{C}(3900)$ discovered at **BESIII**³ and **Belle**⁴, coupling to $J/\psi\pi^{\pm}$

2

m / GeV/c

mass

4.6

4.2

4.4 η_{c} (4¹S₀)

η_c (3¹S_c)

ψ(4660)

w(4415)

ψ**(4360)**

v(4230)

ψ(4160) Ψ(2 D₁)

ψ(4040)

h_c (3¹P₁)

 $h_{c} (2^{1}P_{1})$

Z_c(4430)

Z_(4200)

Z_c(4020)

(3900)

 $m(D_s^*\overline{D}_s^*)$

 $m(D_s\overline{D}_s^*)$

 $m(D^*\overline{D}^*)$

 $m(D_s\overline{D}_s)$

 $m(D^*\overline{D})$

 $(3^{3}P_{2})$

χ_{c1} (3³P

 χ_{1} (2³P₄)

χ_{c0} (3³P₀)

X(3915)

$\stackrel{\doteq}{=} \underbrace{wwv}_{MUNSTER} \quad \text{The heavy charmonium sector } c\overline{c}$

Unpredicted *XYZ* states have small coupling to $D\overline{D}$

... but observed in many charmonium transitions, e.g.

 $\psi(4260) \rightarrow J/\psi\pi^{+}\pi^{-}$ $\psi(4260) \rightarrow h_{c}\pi^{+}\pi^{-1}$ $\psi(4260) \rightarrow \psi(2S)\pi^{+}\pi^{-2}$

... theoretical interpretations:

compact tetraquarks, molecules, hybrids, hadrocharmonia,...

...**strategy:** search in many possible decay channels

The charmonium and charmonium-like sector

The **BESIII** experiment

Recent studies about XYZ particles at BESIII

$$e^+e^-
ightarrow \phi \Lambda \overline{\Lambda}$$

 $e^+e^-
ightarrow \eta \psi(2S)$
 $e^+e^-
ightarrow e^+e^-
ightarrow \eta_c + \pi^+\pi^-\pi^0, \pi^+\pi^-, \pi^0\gamma$
 $e^+e^-
ightarrow e^+e^-
ightarrow K^+ (D_s^-D^{*0} + D_s^{*-}D^0)$
 $e^+e^-
ightarrow p\overline{p}\eta, p\overline{p}\omega$

WWU

The BESIII experiment at IHEP located in Beijing

 $\sqrt{s} = 2.0 - 5.0 \text{ GeV}$ $J^{PC} = 1^{--}$ produced directly

World's largest data sample at J/ψ and $\psi(2S)$ resonance

MDC: Wire chamber

TOF: plastic scintillator

EMC: CsI(TI) crystal SC: Solenoid magnet with B = 1 T

RPC: μ -Veto: μ/π PID \rightarrow PID using dE/dx and TOF

The charmonium and charmonium-like sector

The BESIII experiment

Recent studies about XYZ particles at BESIII

$$e^+e^-
ightarrow \phi \Lambda \overline{\Lambda}$$

 $e^+e^-
ightarrow \eta \psi(2S)$
 $e^+e^-
ightarrow e^+e^-
ightarrow \eta_c + \pi^+\pi^-\pi^0, \pi^+\pi^-, \pi^0\gamma$
 $e^+e^-
ightarrow e^+e^-
ightarrow K^+ (D_s^-D^{*0} + D_s^{*-}D^0)$
 $e^+e^-
ightarrow p\overline{p}\eta, p\overline{p}\omega$

$\underline{=}^{\pm} \underbrace{wwv}_{\text{MÜNSTER}} \quad e^+e^- \to \phi \Lambda \overline{\Lambda}$

 $\psi(4230)$ interpreted as diquark-antidiquark $cs\overline{c}\overline{s}$

$$o$$
 Decays to final states containing $s\overline{s}$, e.g. $\psi \to f_0(980)J/\psi$ in $e^+e^- \to \psi \to \pi^+\pi^- J/\psi$

 \rightarrow Expected to decay into $\phi \Lambda \overline{\Lambda}$

ψ(4230): 4.2*σ*

 $\psi(4360): 3.1\sigma$

Large interference between continuum processes and resonances

$\underline{=}^{\underline{}} \underbrace{wwv}_{\text{munster}} \quad e^+e^- \to \phi \Lambda \overline{\Lambda}$

Near-threshold enhancements observed involving baryon-antibaryon pairs, here: C = +

 \rightarrow Spin-parity can be determined studying the angular distributions

χ(**2260**):>25σ

$$m = 2262 \pm 4 \text{ MeV}/c^2$$

 $\Gamma = 72 \pm 5 \text{ MeV}$

 \rightarrow No matched resonance in the PDG

$$\Rightarrow J^{PC} = 2^{++}, 2^{-+} \text{ favored}, \\ 0^{-+} \text{ rejected (no } \eta(2225))$$

$\underline{=}^{\pm} \underbrace{wwv}_{\text{MUNSTER}} \quad e^+e^- \to \eta\psi(2S)$

Besides $\pi\pi$ hadronic transitions, search for $\psi(4230) \rightarrow \eta + c\overline{c}$

 $e^+e^- \rightarrow \psi(4220/4390) \rightarrow \eta J/\psi^{1}$ observed at BESIII with >6 σ

No significant structure in $\eta \psi(2S) \rightarrow$ collect more data, missing track technique

$\underline{=}^{\underline{-}} \underbrace{wwv}_{\text{MUNSTER}} \quad e^+e^- \rightarrow \eta_c + \pi^+\pi^-\pi^0, \pi^+\pi^-, \pi^0\gamma$

Newly observed $\chi(3872)$, $Z_c(3900)$ and $Z_c(4020)$ found close to $D\overline{D}^*$ and $D^*\overline{D}^*$ thresholds with $J^P(D\overline{D}) = 0^+$

 \rightarrow Z_c expected to decay into $\eta_c \pi$, also search for $\psi \rightarrow \eta_c$ + light recoils

 $e^+e^- \rightarrow \eta_c \pi^+\pi^-\pi^0$ observed for the first time \rightarrow In agreement with the production of $\psi(4260)$ decaying to $\eta_c \pi^+\pi^-\pi^0$

Upper limits for $e^+e^- o \eta_c + \pi^+\pi^-$, $\pi^0\gamma$

No significant signal is found for a charged $Z_c^{\pm} \rightarrow \eta_c \pi^{\pm}$

$$\stackrel{\doteq}{=} \underset{\text{MUNSTER}}{=} e^+e^- \to K^+(D_s^-D^{*0} + D_s^{*-}D^0)$$

Observation of $Z_c^{\pm 0}(c\overline{c}q\overline{q})$ with q = u, d have opened a new chapter in HEP

Assuming SU(3) flavor symmetry, strange partners $Z_{cs}^{\pm 0}(c\overline{c}s\overline{q})$ should exist, predicted with a mass around $D_s^- D^{*0}$ and $D_s^{*-} D^0$

→ Observed enhancement, called $Z_{cs}^-(3985)$, near $D_s^- D^{*0}$ and $D_s^{*-} D^0$ thresholds with 5.3 σ

$$m = 3985.5^{+1.8}_{-2.6} \pm 2.1 \text{ MeV}/c^2$$

 $\Gamma = 12.8^{+5.3}_{-4.4} \pm 3.0 \text{ MeV}$

$$\underline{=}^{\pm} \underbrace{wwv}_{\text{MUNSTER}} \quad e^+e^- \to p\overline{p} + \eta, \omega$$

No observation of $\psi(4260) \rightarrow \text{light hadrons}$

Final states containing $p\overline{p}$ pair very interesting:

 $\psi \rightarrow p\overline{p}h \stackrel{_{\scriptscriptstyle 1}}{\longleftrightarrow} p\overline{p} \rightarrow \psi h, h = unflavored light meson$ \rightarrow PANDA

No significant structure in $p\overline{p}\eta$ nor in $p\overline{p}\omega$

 $\rightarrow p \overline{p} \eta'$ already started, looks promising

√s (GeV)

3.8

4.5

Recent studies with very high accuracy on

- Vector charmonium(-like) states ψ
- Charged charmonium-like states $Z_c^{\pm 0}$
- Neutral charmonium-like states χ

Recently, more data is taken between $\sqrt{s} = 4.60 \text{ GeV}$ and $\sqrt{s} = 4.95 \text{ GeV} \rightarrow \text{new } Z_{cs}(3985)^{1}$

More analyses are in progress, e.g. $e^+e^- o p\overline{p}\eta'$

$\underline{=}^{\pm} \underbrace{wwv}_{\text{MÜNSTER}} e^+e^- \rightarrow \chi_{cI}\pi^+\pi^-$

In 2008, Belle observed $Z_c^+(4050)$ and $Z_c^+(4250)$ in $\chi_{c1}\pi^+$ via $\overline{B}_0 \to K^-\pi^+\chi_{c1}^-$ Babar has found no evidence in the same reaction $\xrightarrow{2}$ 90% C.L. upper limits

No significant $\chi_{cI}\pi^+\pi^-$ signals \rightarrow upper limits, also for Z_c^{\pm} in $\chi_{cI}\pi^{\pm}$ at BESIII

$\underline{=}^{\pm} \underbrace{wwv}_{\text{MUNSTER}} \quad e^+e^- \to \eta_c \eta \pi^+ \pi^-$

$Z_{c}^{\pm 0}(3900) \text{ in } \pi \pi J/\psi$ $Z_{c}^{\pm 0}(4020) \text{ in } \pi \pi h_{c}$ Isospin triplets

ightarrow Possible unobserved triplet $Z_c^{\pm 0}
ightarrow \eta_c \pi^{\pm 0}$ and singlet $Z_c^0
ightarrow \eta_c \eta$

 \rightarrow Search in $\eta_c \eta \pi^+ \pi^-$ at five different \sqrt{s}

 $\pi\pi$ system with L = 1 to conserve *C*-parity

ightarrow Mainly via $ho
ightarrow \pi\pi$

 η_c reconstructed in 16 exclusive decay modes

