

Light Meson Spectroscopy at BESIII

Jinfei Wu

(On behalf of BESIII Collaboration)

Institute of High Energy Physics ,CAS

EPS-HEP Conference 2021(29 July 2021)

Introduction of BEPCII/BESIII

BEPC -> BEPCII 2009-now physics run c.m. energy 2.0 – 4.95 GeV Peak Lum. 1 x 10³³ /cm²/s

Datasets of BESIII

Largest J/ψ and $\psi(2S)$ dataset in the world!!

Several forms of hadrons

>Mesons and baryons in SM model.

>The exotics allowed by QCD.

- Multi-quarks : number of quarks>= 4
- Hybrid state : quarks + gluons
- Glueball : only gluons g

Light meson spectroscopy is an important key to test the QCD theory. Selected results from BESIII:

g

- X(1835) and $X(p\overline{p})$
- Possible glueball candidates

Baryon

a q

Meson

Study of the X(1835)

First observation of the X(1835) at BESII, then confirmed by BESIII.

The spin-parity is determined to be 0^{-+} in $J/\psi \rightarrow \gamma K_s K_s \eta$ channel, decays to $f_0(980)\eta$.

 $M = 1844 \pm 9^{+16} - 25 MeV$

$$= 192^{+20}_{-17}^{+62}_{-43} \text{ MeV}$$

2021/7/29

Study of the $X(p\overline{p})$

PRL.108.112003

 $\succ \mathsf{X}(p\bar{p}): 0^{-+}.$

No observed in other channels, cannot be pure FSI effect.

 $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ <u>PRL.117.042002(2016)</u> **2-BWs, Flatte formula** Almost equally fit quality. **A connection between X(1835) and X(pp), pp** molecule-like or

bound state. 6

Study of the X(1835)

components from the PWA results of $J/\psi \rightarrow \gamma \gamma \phi$.

No significant X(1835) is observed in the process of $J/\psi \rightarrow \omega \pi^+ \pi^- \eta'$.

Possible glueball candidates

Lattice QCD predicts the possible glueball candidates as below.

Possible glueball candidates at BESIII.

>0⁺⁺: $f_0(1500)$ and $f_0(1710)$ • $J/ψ → γK_sK_s, γηη, γπ^0π^0$

$$\geq 2^{++}: f_2(2340)$$

• $J/\psi \rightarrow \gamma K_s K_s, \gamma \eta \eta, \gamma \phi \phi$

 $> 0^{-+} : X(2370)$ $\cdot J/\psi \to \gamma \pi^+ \pi^- \eta', \gamma K \overline{K} \eta, \gamma \eta \eta \eta'$

PWA of $J/\psi \rightarrow \gamma K_s K_s$

> $f_0(1710)$ has ~10 times larger production rate than $f_0(1500)$.

- Comparable with LQCD.
- Large overlap with scalar glueball.

Also large contribution from $f_2(2340)$.

Lowest lying tensor glueball.

Resonance	$M ({\rm MeV}/c^2)$	$M_{\rm PDG}~({\rm MeV}/c^2)$	$\Gamma (MeV/c^2)$	$\Gamma_{\rm PDG}~({\rm MeV}/c^2)$	Branching fraction	Significance
$K^{*}(892)$	896	895.81 ± 0.19	48	47.4 ± 0.6	$(6.28^{+0.16+0.59}_{-0.17-0.52}) \times 10^{-6}$	35σ
$K_1(1270)$	1272	1272 ± 7	90	90 ± 20	$(8.54^{+1.07+2.35}_{-1.20-2.13}) imes 10^{-7}$	16σ
$f_0(1370)$	$1350\pm9^{+12}_{-2}$	1200 to 1500	$231\pm21^{+28}_{-48}$	200 to 500	$(1.07^{+0.08+0.36}_{-0.07-0.34}) \times 10^{-5}$	25σ
$f_0(1500)$	1505	1504 ± 6	109	109 ± 7	$(1.59^{+0.16+0.18}_{-0.16-0.56}) \times 10^{-5}$	23σ
$f_0(1710)$	$1765\pm2^{+1}_{-1}$	1723^{+6}_{-5}	$146\pm 3^{+7}_{-1}$	139 ± 8	$(2.00^{+0.03+0.31}_{-0.02-0.10}) \times 10^{-4}$	$\gg 35\sigma$
$f_0(1790)$	$1870\pm7^{+2}_{-3}$		$146 \pm 14^{+7}_{-15}$		$(1.11^{+0.06+0.19}_{-0.06-0.32}) \times 10^{-5}$	24σ
$f_0(2200)$	$2184 \pm 5^{+4}_{-2}$	2189 ± 13	$364\pm9^{+4}_{-7}$	238 ± 50	$(2.72^{+0.08+0.17}_{-0.06-0.47}) imes 10^{-4}$	$\gg 35\sigma$
$f_0(2330)$	$2411\pm10\pm7$		$349 \pm 18^{+23}_{-1}$		$(4.95^{+0.21+0.66}_{-0.21-0.72}) imes 10^{-5}$	35σ
$f_2(1270)$	1275	1275.5 ± 0.8	185	$186.7^{+2.2}_{-2.5}$	$(2.58^{+0.08+0.59}_{-0.09-0.20}) imes 10^{-5}$	33σ
$f'_{2}(1525)$	1516 ± 1	1525 ± 5	$75\pm1\pm1$	73^{+6}_{-5}	$(7.99^{+0.03+0.69}_{-0.04-0.50}) \times 10^{-5}$	$\gg 35\sigma$
$f_2(2340)$	$2233 \pm 34^{+9}_{-25}$	2345_{-40}^{+50}	$507\pm37^{+18}_{-21}$	322_{-60}^{+70}	$(5.54^{+0.34+3.82}_{-0.40-1.49}) imes 10^{-5}$	26σ
0 ⁺⁺ PHSP		•••	•••	• • •	$(1.85^{+0.05+0.68}_{-0.05-0.26}) \times 10^{-5}$	26σ
2 ⁺⁺ PHSP			. Wujf		$(5.73^{+0.99+4.18}_{-1.00-3.74}) imes 10^{-5}$	13σ

Recent results of X(2370)

> The X(2370) is first observed in the process of $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$, and now in the process of $J/\psi \rightarrow \gamma K K \eta'$.

Recent results of X(2370)

The search for X(2370) is performed in the process of $J/\psi \rightarrow \gamma \eta \eta \eta'$.

 $Br(J/\psi \to \gamma X(2370)) \times Br(X(2370) \to \eta \eta \eta') < 9.2 \times 10^{-6} \text{ at } 90\% \text{ C.L.}$

The upper limit is not in contradiction with the pseudoscalar glueball assumption. 2021/7/29

Summary

Many interesting and important results in light meson physics at BESIII.

- First direct connection between the X(1835) and the $X(p\bar{p})$, but a molecule or bound state???
- A systematical glueball search, $f_0(1500)$, $f_0(1710)$, $f_2(2340)$ and X(2370).

More analyses are on the way with the 10 billion J/ψ and 3 billion $\psi(2S)$ events.

X(18xx) between 1.8~1.9 GeV

Are they same? The masses and widths are different in several channels.

>What is the Nature of X(18xx)? $p\overline{p}$ bound state, second radial excitation of η' , pseudoscalar glueball ?

> In the PWA of $J/\psi \rightarrow \gamma K_s K_s \eta$ and $J/\psi \rightarrow \gamma p \overline{p}$, the J^{PC} of X(1835) is derteminerd to be 0⁻⁺.

Study of the $X(p\overline{p})$

First observation of $p\bar{p}$ mass threshold enhancement @BESII.

>The spin-parity is determined to be 0^{-+} .

No similar threshold structure observed in other channels, cannot be pure FSI effect.

2021/7/29