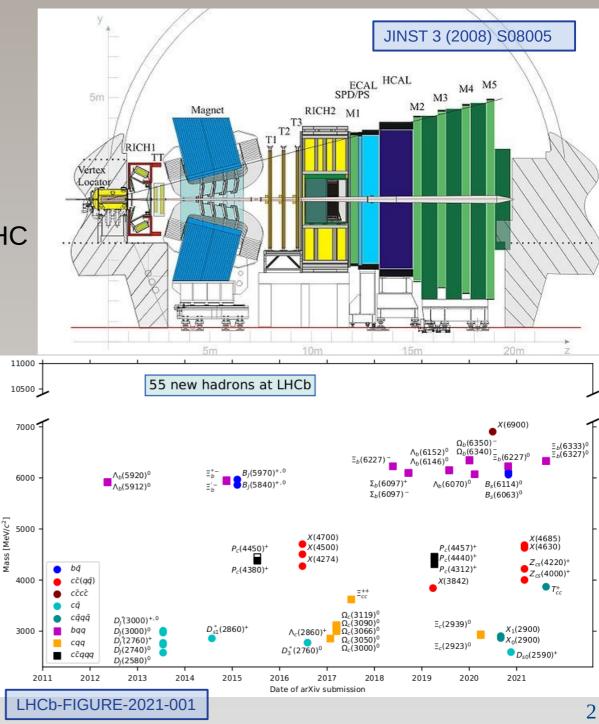


Recent LHCb results on exotic meson candidates

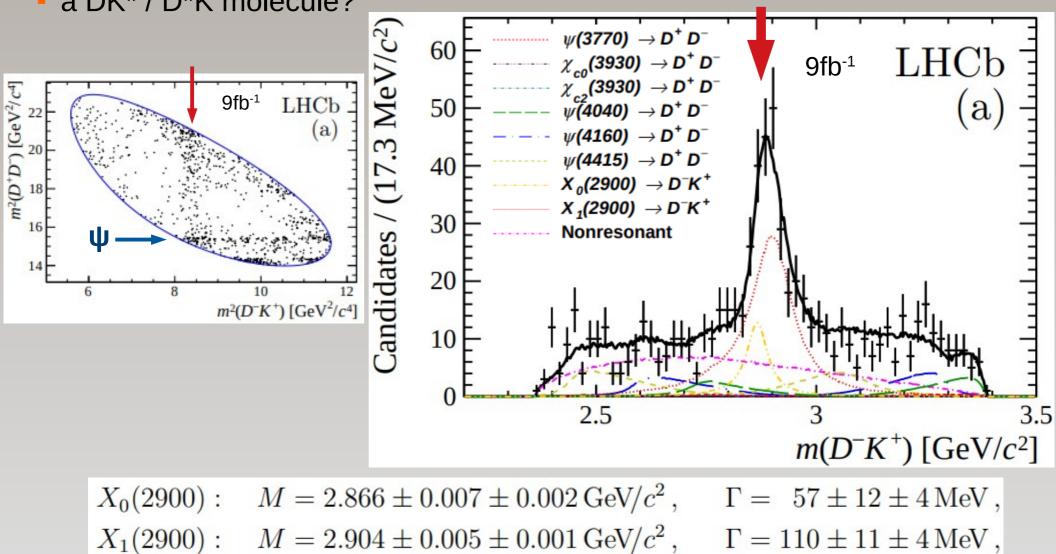
Ivan Polyakov Syracuse University

on behalf of LHCb collaboration



EPS-HEP, 29 July 2021

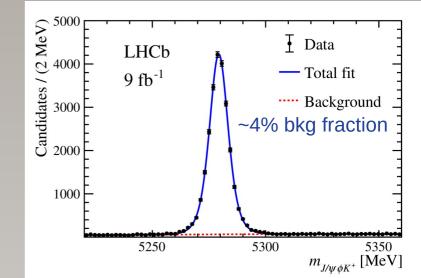
The LHCb detector

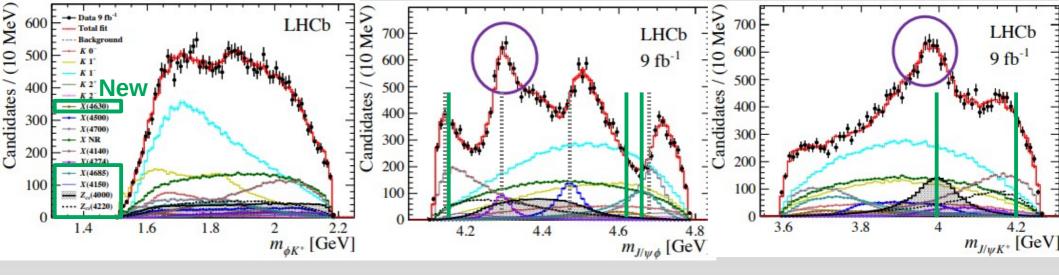

- Heavy hadron spectroscopy is a powerful tool for understanding how QCD works at "atomic" scale
- LHCb forward spectrometer at LHC with excellent
 - momenta/mass,
 - vertex/time resolution
 - particle identification (K/ π /p/ μ)

very powerful tool for heavy hadron spectroscopy → contribute to major part of hadrons discovered at LHC

Tetraquark in $B^+ \rightarrow D^+D^-K^+$

- Make full amplitude analysis of $B^+ \rightarrow D^+D^-K^+$ Dalitz plot
- Observe 2 peaks in D⁻K⁺ mass distribution
- Minimal quark content cuds
- a DK* / D*K molecule?



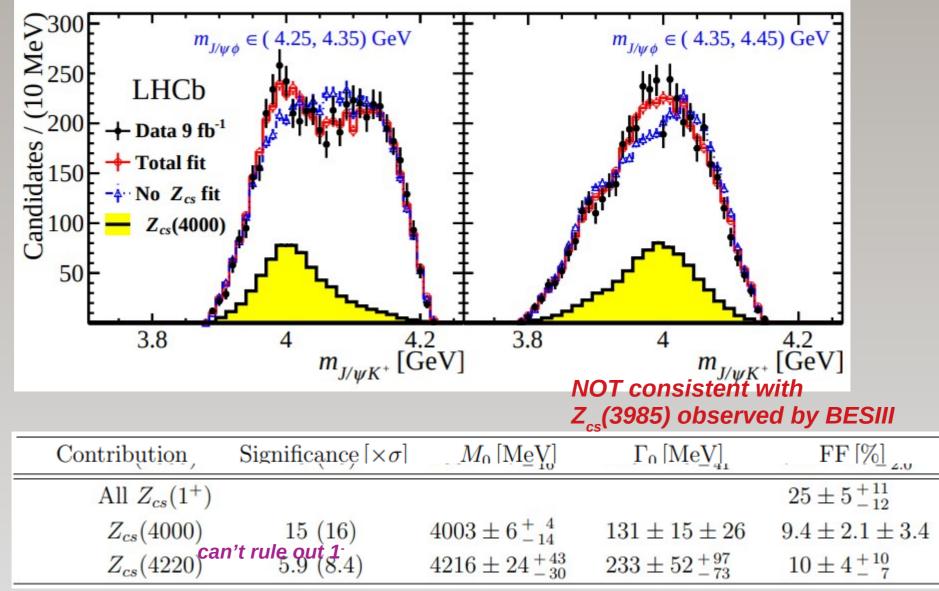

Ivan Polyakov, Syracuse University

PRL 125 (2020) 242001

PRD 102 (2020) 112003

- In Run1 analysis four X → J/ψφ states were observed with S>5σ with Run2 get ~6 times larger sample
- Construct 6D amplitude in helicity approach
- Add more states to the Run1 model 5 K* states + 4X states + J/ψφ non-res. to get good description:
 - + 4 more K* states
 - + 2(3) new X($_{\rightarrow}$ J/ $\psi\phi$) states
 - + 2 new $Z_{cs}(\rightarrow J/\psi K)$ states

Ivan Polyakov, Syracuse University


LHCb-PAPER-2020-044

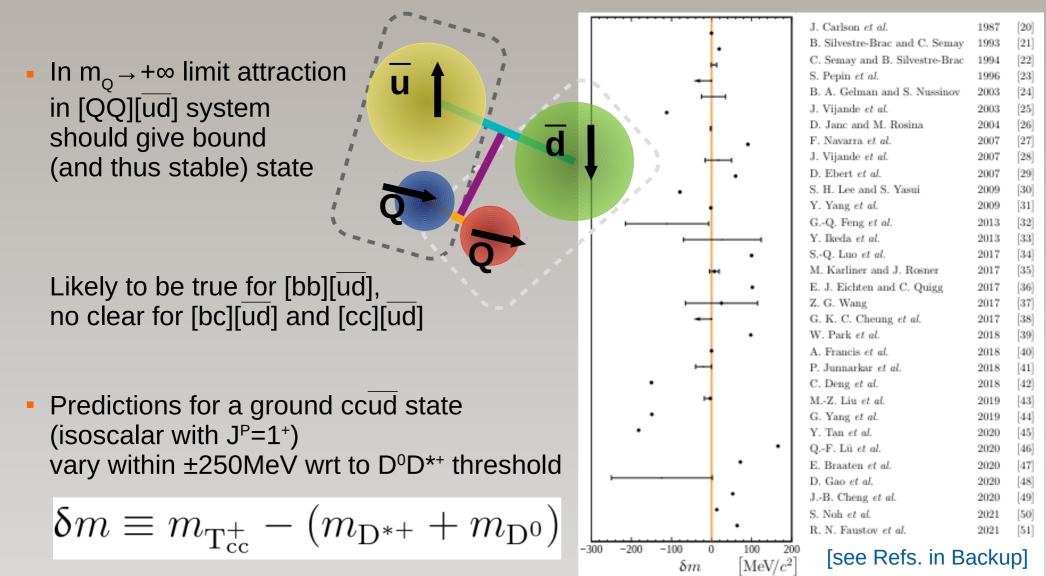
More exotics in $B^+ \to J/\psi \phi K^+$

Demonstration of effect of adding Z_{cs} states

LHCb-PAPER-2020-044

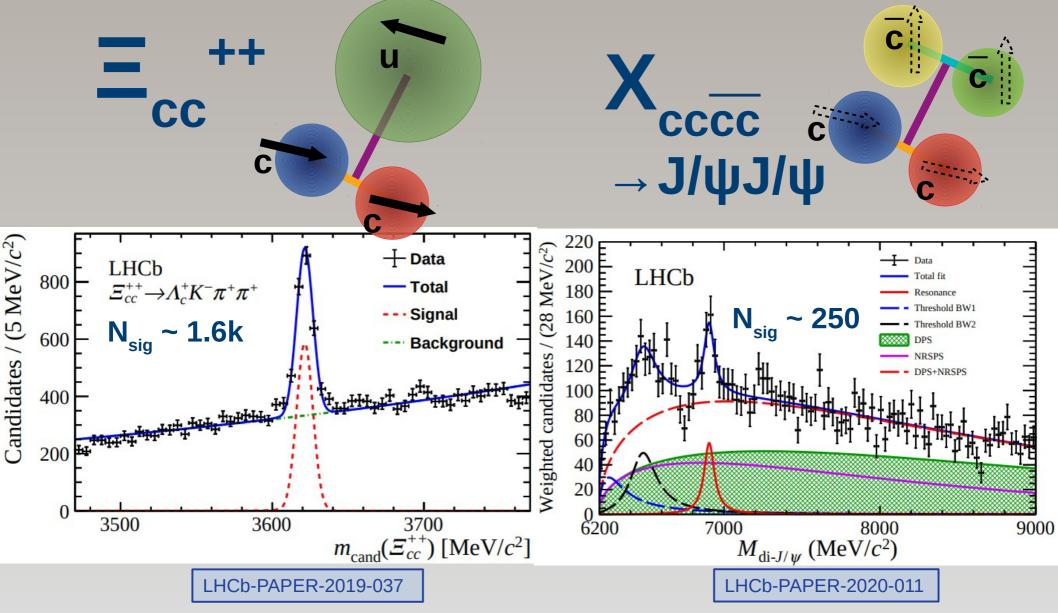
• The "narrow" Z_{cs} at 4 GeV is evident

More exotics in $B^+ \rightarrow J/\psi \phi K^+ / \pi^+\pi^-$


Resulting parameters for X and Z resonances

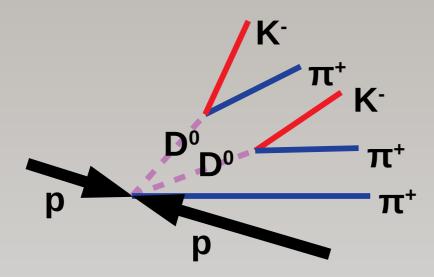
Determine J^{P} for all states except X(4150), X(4630) and Z (4220)

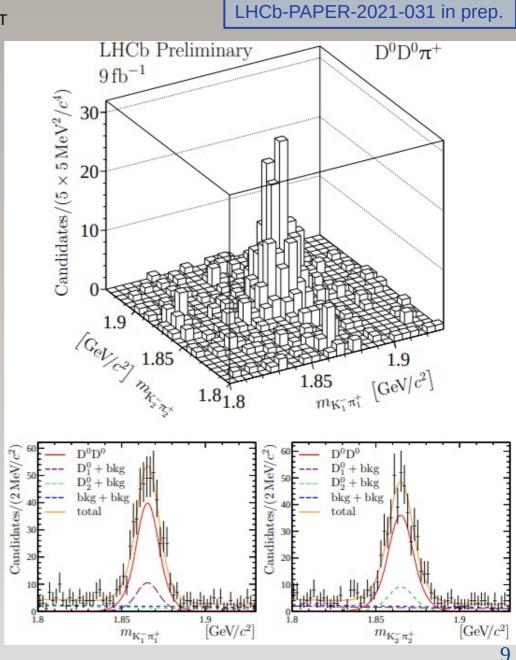
	- Determine 5 for all states except $\Lambda(+150)$, $\Lambda(+050)$ and $\Sigma_{cs}(+220)$								
Cor	ntribution S	ignificance $[\times \sigma]$	$M_0 [{ m MeV}]$	$\Gamma_0[{\rm MeV}]$	FF [%]	HCb-PAPER-2020-044			
$X(2^{-})$ can't rule out other J ^P									
	X(4150)	4.8 (8.7)	$4146\pm18\pm33$	$135\pm28{}^{+59}_{-30}$	$2.0\pm0.5^{+0.8}_{-1.0}$				
	<i>X</i> (1 ⁻) <i>can't</i>	rule out 2 ⁻							
New X	X(4630)	5.5(5.7)	$4626 \pm 16 {}^{+}_{-110}{}^{18}_{-110}$	$174 \pm 27 {}^{+134}_{-73}$	$2.6\pm0.5{}^{+2.9}_{-1.5}$				
	All $X(0^+)$				$20 \pm 5^{+14}_{-7}$				
Seen in	X(4500)	20(20)	$4474\pm3\pm3$	$77\pm6^{+10}_{-8}$	$5.6\pm0.7^{+2.4}_{-0.6}$				
Run1	X(4700)	17 (18)	$4694 \pm 4^{+16}_{-3}$	$87\pm8{}^{+16}_{-6}$	$8.9 \pm 1.2 {}^{+ 4.9}_{- 1.4}$				
	$\mathrm{NR}_{J/\psi\phi}$	4.8 (5.7)			$28 \pm 8 {}^{+19}_{-11}$				
	All $X(1^+)$				$26 \pm 3^{+8}_{-10}$				
	X(4140)	13(16)	$4118 \pm 11 {}^{+ 19}_{- 36}$	$162 \pm 21 {}^{+ 24}_{- 49}$	$17 \pm 3^{+19}_{-6}$				
	X(4274)	18 (18)	$4294 \pm 4 {}^{+3}_{-6}$	$53 \pm 5 \pm 5$	$2.8\pm0.5{}^{+0.8}_{-0.4}$				
	X(4685)	15(15)	$4684 \pm 7^{+13}_{-16}$	$126 \pm 15 {}^{+37}_{-41}$	$7.2 \pm 1.0 {}^{+4.0}_{-2.0}$				
	All $Z_{cs}(1^+)$				$25 \pm 5^{+11}_{-12}$				
New	$rac{Z_{cs}(4000)}{Z_{cs}(4220)}$ can'	15 (16)	$4003 \pm 6 { + \ 4 \atop - 14}^{ + \ 4}$	$131\pm15\pm26$	$9.4 \pm 2.1 \pm 3.4$				
Z _{cs}	$Z_{cs}(4220)$	5.9(8.4)	$4216 \pm 24 {}^{+ 43}_{- 30}$	$233 \pm 52 {}^{+ 97}_{- 73}$	$10 \pm 4 {}^{+ 10}_{- 7}$ J	HEP 02 (2021) 024			
 In B ⁰ → J/ψ 	• In $B_s^0 \rightarrow J/\psi \phi \pi \pi a X \rightarrow J/\psi \phi$ state is seen around								
3 .	-				2 Xield/()	totau			
4.74 Gev M	Min 3~5.50	• $m_{\rm X(4740)}$	$= 4741 \pm 6$	$\pm 6 \text{ MeV}/c$		h			
		$\Gamma_{X(4740)}$	$= 53 \pm 1.0$	$5 \pm 11 \mathrm{MeV}$,	40				
					20				
may be consistent with being X(4700) from $B^+ \rightarrow J/\psi \phi K$									
Ivan Polyakov, Syracı	ise University				4.5	$\frac{4.6 \ 4.7 \ 4.8 \ 4.9}{m_{J/\psi\phi}} \left[{ m GeV}/c^2 ight] 6$			


Doubly charmed tetraquark

 QQq'q'' states are anticipated for 40 years and are the prime candidates within all other exotic systems to be tightly bound and weakly-decaying

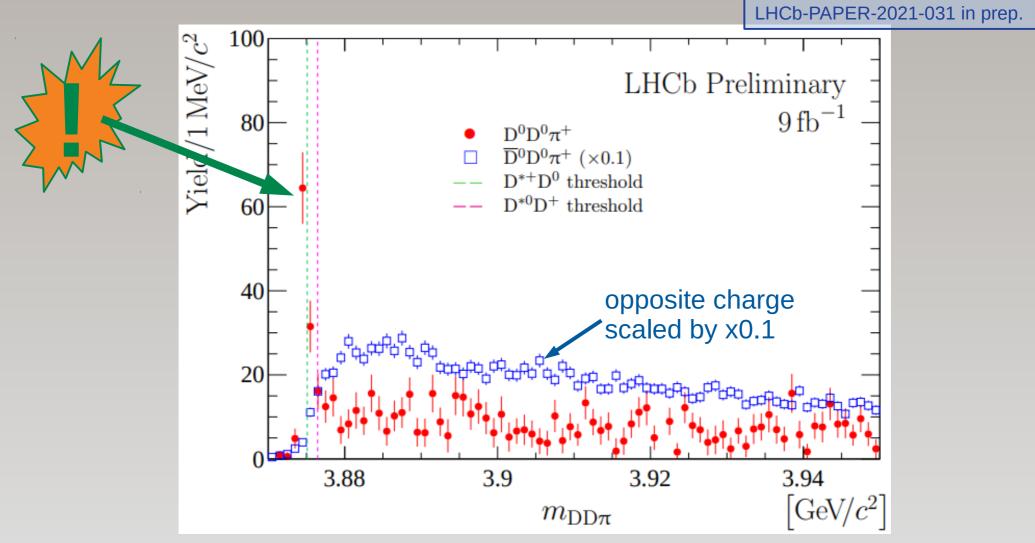
Hadrons with two c-quarks at LHCb


• The observations of Ξ_{cc}^{++} [ccu] and X[cccc] \rightarrow J/ ψ J/ ψ indicate that if the [ccud] exists it should be accessible at LHCb in DD^(*) final states

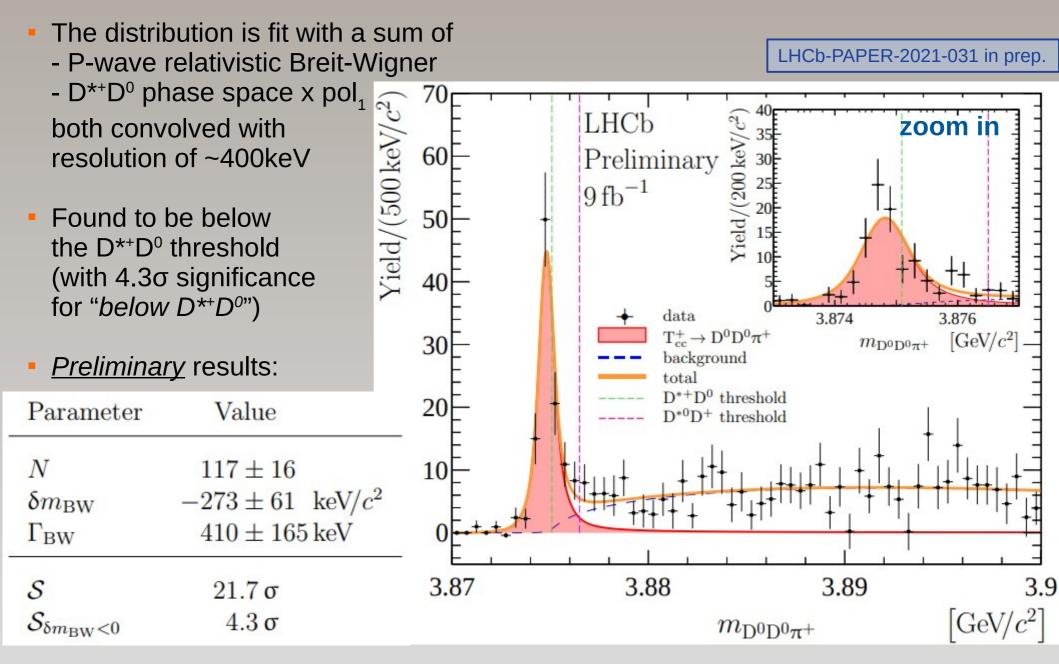

Selection of $D^0D^0\pi^+$

- Select prompt $D^0D^0\pi^+$ candidates via $D^0 \rightarrow K^-\pi^+$
- Require non-prompt K⁻ & π^+ with high p_{τ}
- Require good quality of track, vertexes & particle identification
- Ensure no K/π candidates belong to one track (clones)

or duplicates or reflections via mis-ID



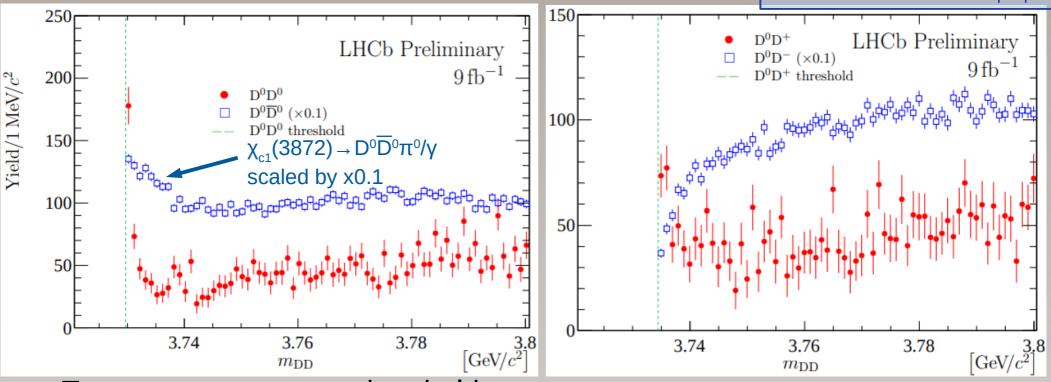
• Subtract fake-D background using 2D fit to $(m_{\kappa\pi}, m_{\kappa\pi})$



- A narrow peak near DD* threshold is seen
- No peaking structures in sidebands or opposite-sign mode (can't be explained by DCS decay $D^0 \rightarrow K^+\pi^-$)
- The structure is present in all different data taking conditions subsamples

Fit with Breit-Wigner function

Systematic uncertainties and result

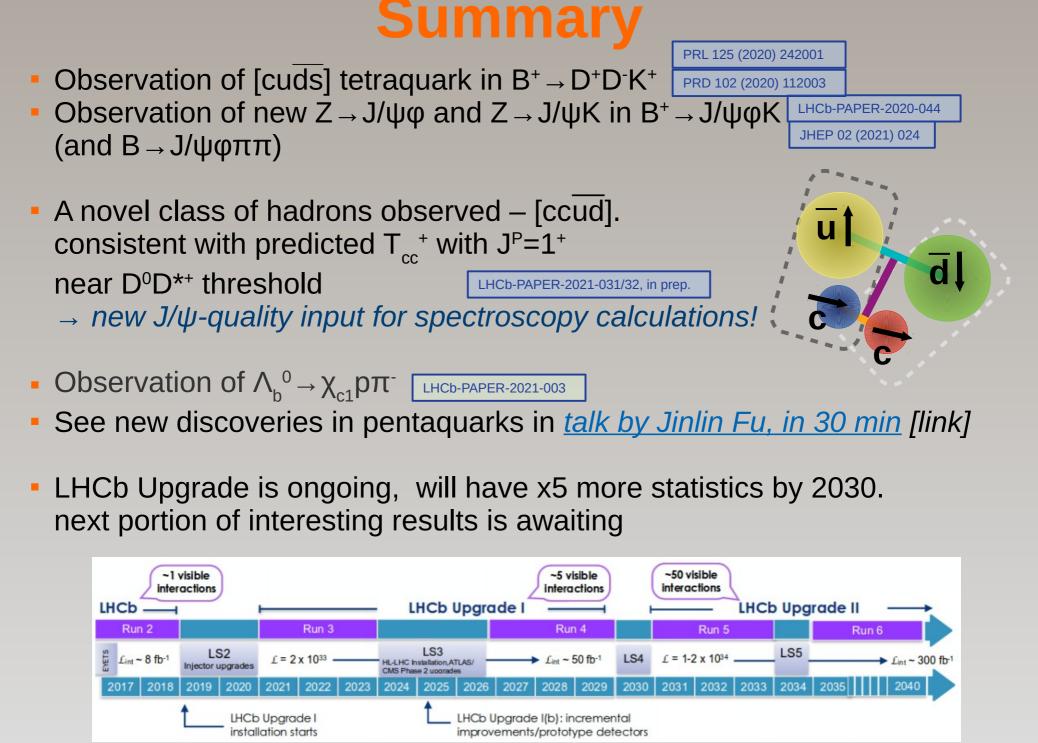

Prelim

LHCb-PAPER-2021-031 in prep.

			LICD-PAPER-2021-0	ost in prep.
<u>ninary:</u>	Source	$\sigma_{\delta m_{\rm BW}} \ [\text{keV}/c^2]$	$\sigma_{\Gamma_{\rm BW}}$ [keV]	
	Fit model			
	Resolution model	2	7	•
	Resolution correction factor	1	30	-
	Background model	3	30	
	Model parameters	< 1	< 1	
	Momentum scale	3		
	Energy loss corrections	1		
	$D^{*+} - D^0$ mass difference	2		
	Total	5	43	
	J ^P quantum numbers	$^{+11}_{-14}$	$^{+18}_{-38}$	-300 -200 -100 0 100 200 300 δ'm [MeV/c ²]
	$\delta m_{\rm BW} = -273 \pm 61 \pm 165 \pm 100 \pm 165 \pm 100 \pm 165 \pm 100 \pm 1000 \pm 100 \pm 10$		consister 1/3 of the	
	$\Gamma_{\rm BW} = 410 \pm 165 \pm 600$	43 - 38 keV,	predictio	ns

- Best precision on mass wrt corresponding threshold of all exotic hadrons! Even better than for Λ_c^+ , Σ_c^- , Ξ_{cc}^{++} ...
- A fit with dedicated model with adequate treatment of DD* thresholds is coming soon ...
 LHCb-PAPER-2021-032 in prep.

D⁰D⁰ and D⁰D⁺ mass distributions


• Two more stuctures at thresholds are seen:

- narrow (<1MeV) in D⁰D⁰ (is it X \rightarrow D⁰D⁰ π^+ ?)
- wide (>1MeV) in D^0D^+ (is it $X \rightarrow D^0D^+\pi^0/\gamma$?)
- \rightarrow speaks towards the isoscalar T_{cc}⁺ with J^P=1⁺ interpretation
- See these (and more) studies in details in oncoming
- Estimate on yields wrt $\chi_{c1}(3872)$

Ivan Polyakov, Syracuse University

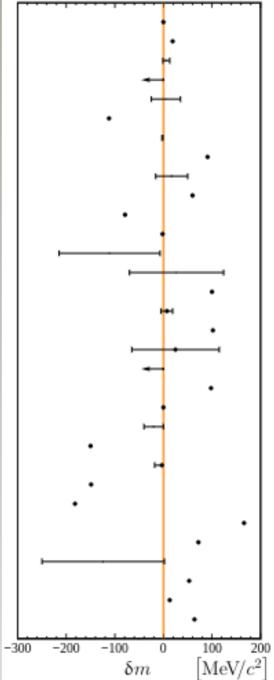
$$\frac{N(T_{cc}^{+} \rightarrow D^{0}D^{0}\pi^{+})}{N(\chi_{c1}(3872) \rightarrow D^{0}\overline{D}^{0}\pi^{0})} \sim 1/20$$

LHCb-PAPER-2021-032 in prep.

Ivan Polyakov, Syracuse University

Simon Eidelman 1948 - 2021

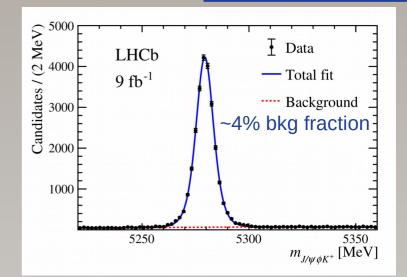
Our distinguished colleague, beloved member of LHCb and whole hadron physics community has passed away.

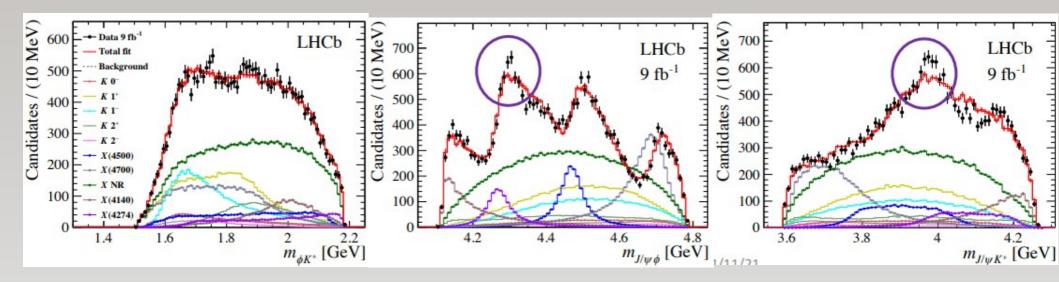

His contribution to the field will have a lasting impact in future generations.

We dedicate the oncoming papers on the observation of the T_{cc}^{+} to his memory.

Theory predictions

Reference		Year	$\delta' m \left[\text{MeV}/c^2 \right]$
J. Carlson, L. Heller and J. A. Tjon	36	1987	~ 0
B. Silvestre-Brac and C. Semay	37	1993	+19
C. Semay and B. Silvestre-Brac	38	1994	[-1, +13]
S. Pepin, F. Stancu, M. Genovese and			
J. M. Richard	39	1996	< 0
B. A. Gelman and S. Nussinov	40	2002	[-25, +35]
J. Vijande, F. Fernandez, A. Valcarce, A. and			
B. Silvestre-Brac	41	2003	-112
D. Janc and M. Rosina	42	2004	[-3, -1]
F. Navarra, M. Nielsen and S. H. Lee	43	2007	+91
J. Vijande, E. Weissman, A. Valcarce	44	2007	[-16, +50]
D. Ebert, R. N. Faustov, V. O. Galkin and	4.5		
W. Lucha	45	2007	+60
S. H. Lee and S. Yasui	46	2009	-79
Y. Yang, C. Deng, J. Ping and T. Goldman	47	2009	-1.8
GQ. Feng, XH. Guo and BS. Zou	48	2013	-215
Y. Ikeda, B. Charron, S. Aoki, T. Doi, T. Hatsuda,	Ħ		
T. Inoue, N. Ishii, K. Murano, H. Nemura and	49	2013	[-70, +124]
K. Sasaki			
SQ. Luo, K. Chen, X. Liu, YR. Liu and S	20	0017	100
L. Zhu	50	2017	+100
M. Karliner and J. Rosner	51	2017	$7 \pm 12 \rightarrow 1$
E. J. Eichten and C. Quigg	52	2017	+102
Z. G. Wang	53	2017	$+25 \pm 90$
G. K. C. Cheung, C. E. Thomas, J. J. Dudek and	E 4	0017	< 0
R. G. Edwards	54	2017	$\lesssim 0$
W. Park, S. Noh and S. H. Lee	55	2018	+98
A. Francis, R. J. Hudspith, R. Lewis and K. Malt-	56	0019	0
man	50	2018	~ 0
P. Junnarkar, N. Mathur and M. Padmanath	57	2018	[-40, 0]
C. Deng, H. Chen and J. Ping	58	2018	-150
MZ. Liu, TW. Wu, V. Pavon Valderrama, J	59	2019	a+4
J. Xie and LS. Geng	09	2019	-3^{+4}_{-15}
G. Yang, J. Ping and J. Segovia	60	2019	-149
Y. Tan, W. Lu and J. Ping	61	2020	-182
QF. Lü, DY. Chen and YB. Dong	62	2020	+166
E. Braaten, LP. He and A. Mohapatra		2020	+72
D. Gao , D. Jia, YJ. Sun, Z. Zhang, WN. Liu		2020	[-250, +2]
and Q. Mei		2020	$[-200, \pm 2]$
JB. Cheng, SY. Li, YR. Liu, ZG. Si, T. Yao	65	2020	+53
S. Noh, W. Park and S. H. Lee	66	2021	+13
R. N. Faustov, V. O. Galkin and E. M. Savchenko	67	2021	+64

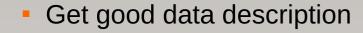

Refs. for theory predictions

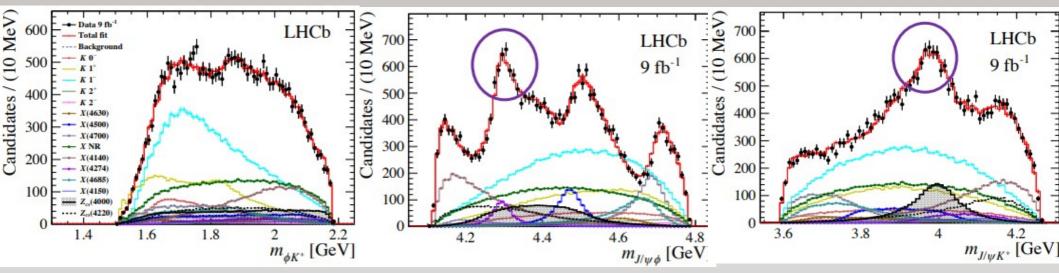

- [36] J. Carlson, L. Heller, and J. A. Tjon, Stability of dimesons, Phys. Rev. D37 (1988) 744.
- [37] B. Silvestre-Brac and C. Semay, Systematics of L = 0 q²q² systems, Z. Phys. C57 (1993) 273, [2]
- [38] C. Semay and B. Silvestre-Brac, Diquonia and potential models, Z. Phys. C61 (1994) 271.
- [39] S. Pepin, F. Stancu, M. Genovese, and J. M. Richard, Tetraquarks with color blind forces in chiral quark models, Phys. Lett. B393 (1997) 119 arXiv:hep-ph/9609348
- [40] B. A. Gelman and S. Nussinov, Does a narrow tetraquark ccud state exist?, Phys. Lett. B551 (2003) 296, arXiv:hep-ph/0209095.
- [41] J. Vijande, F. Fernandez, A. Valcarce, and B. Silvestre-Brac, Tetraquarks in a chiral constituent quark model, Eur. Phys. J. A19 (2004) 383, arXiv:hep-ph/0310007, 2
- [42] D. Janc and M. Rosina, The T_{cc} = DD* molecular state, Few Body Syst. 35 (2004) 175, arXiv: hep-ph/0405208.
- [43] F. S. Navarra, M. Nielsen, and S. H. Lee, QCD sum rules study of QQ ud mesons, Phys. Lett. B649 (2007) 166, arXiv:hep-ph/0703071, 2
- [44] J. Vijande, E. Weissman, A. Valcarce, and N. Barnea, Are there compact heavy four-quark bound states?, Phys. Rev. D76 (2007) 094027, arXiv:0710.2516, 2
- [45] D. Ebert, R. N. Faustov, V. O. Galkin, and W. Lucha, Masses of tetraquarks with two heavy quarks in the relativistic quark model, Phys. Rev. D76 (2007) 114015, arXiv:0706.3853.
- [46] S. H. Lee and S. Yasui, Stable multiquark states with heavy quarks in a diquark model, Eur. Phys. J. C64 (2009) 283, arXiv:0901.2977.
- [47] Y. Yang, C. Deng, J. Ping, and T. Goldman, ps-wave QQqq state in the constituent quark model, Phys. Rev. D80 (2009) 114023, 2
- [48] G.-Q. Feng, X.-H. Guo, and B.-S. Zou, QQ'ūd bound state in the Bethe-Salpeter equation approach, arXiv: 1309.7813, 2
- [49] Y. Ikeda et al., Charmed tetraquarks T_{cc} and T_{cs} from dynamical lattice QCD simulations, Phys. Lett. B729 (2014) 85, arXiv:1311.6214 [2]
- [50] S.-Q. Luo et al., Exotic tetraquark states with the qqQQ configuration, Eur. Phys. J C77 (2017) 709, arXiv:1707.01180, 2
- [51] M. Karliner and J. L. Rosner, Discovery of doubly-charmed \(\mathcal{\equiv}\) baryon implies a stable (bbud) tetraquark, Phys. Rev. Lett. **119** (2017) 202001, arXiv:1707.07666
 [2]

Iv

- [53] Z.-G. Wang, Analysis of the axialvector doubly heavy tetraquark states with QCD sum rules, Acta Phys. Polon. B49 (2018) 1781, arXiv:1708.04545, 2
- [54] Hadron Spectrum collaboration, G. K. C. Cheung, C. E. Thomas, J. J. Dudek, and R. G. Edwards, *Tetraquark operators in lattice QCD and exotic flavour states in the charm sector*, JHEP **11** (2017) 033, arXiv:1709.01417.
- [55] W. Park, S. Noh, and S. H. Lee, Masses of the doubly heavy tetraquarks in a constituent quark model, Acta Phys. Polon. B50 (2019) 1151, arXiv:1809.05257.
- [56] A. Francis, R. J. Hudspith, R. Lewis, and K. Maltman, Evidence for charm-bottom tetraquarks and the mass dependence of heavy-light tetraquark states from lattice QCD, Phys. Rev. D99 (2019) 054505, arXiv:1810.10550 [2]
- [57] P. Junnarkar, N. Mathur, and M. Padmanath, Study of doubly heavy tetraquarks in Lattice QCD, Phys. Rev. D99 (2019) 034507, arXiv:1810.12285, [2]
- [58] C. Deng, H. Chen, and J. Ping, Systematical investigation on the stability of doubly heavy tetraquark states, Eur. Phys. J. A56 (2020) 9, arXiv: 1811.06462.
- [59] M.-Z. Liu et al., Heavy-quark spin and flavor symmetry partners of the X(3872) revisited: What can we learn from the one boson exchange model?, Phys. Rev. D99 (2019) 094018 arXiv: 1902.03044 [2]
- [60] G. Yang, J. Ping, and J. Segovia, Doubly-heavy tetraquarks, Phys. Rev. D101 (2020) 014001, arXiv:1911.00215, 2
- [61] Y. Tan, W. Lu, and J. Ping, QQqq in a chiral constituent quark model, Eur. Phys. J. Plus 135 (2020) 716, arXiv:2004.02106, 2
- [62] Q.-F. Lü, D.-Y. Chen, and Y.-B. Dong, Masses of doubly heavy tetraquarks T_{QQ'} in a relativized quark model, Phys. Rev. D102 (2020) 034012, arXiv: 2006.08087 2
- [63] E. Braaten, L.-P. He, and A. Mohapatra, Masses of doubly heavy tetraquarks with error bars, Phys. Rev. D 103 (2021) 016001, arXiv:2006.08650.
- [64] D. Gao et al., Masses of doubly heavy tetraquark states with isospin = ¹/₂ and 1 and spin-parity 1^{+±}, arXiv:2007.15213, 2
- [65] J.-B. Cheng et al., Double-heavy tetraquark states with heavy diquark-antiquark symmetry, arXiv:2008.00737.
- [66] S. Noh, W. Park, and S. H. Lee, The doubly-heavy tetraquarks (qq'QQ') in a constituent quark model with a complete set of harmonic oscillator bases, arXiv:2102.09614.
- [67] R. N. Faustov, V. O. Galkin, and E. M. Savchenko, Heavy tetraquarks in the relativistic quark model, Universe 7 (2021) 94, arXiv:2103.01763 [2]

- In Run1 analysis four $X \rightarrow J/\psi \phi$ states were observed with $S > 5\sigma$
- With Run2 get ~6 times larger sample
- Construct 6D amplitude in helicity approach Model resonances as Breit-Wigner, K-matrix or Flatte for systematic studies
- Firstly try old Run1 model (5K* + 4X + XNR) Clear discrepancies are observed, model needs to be improved

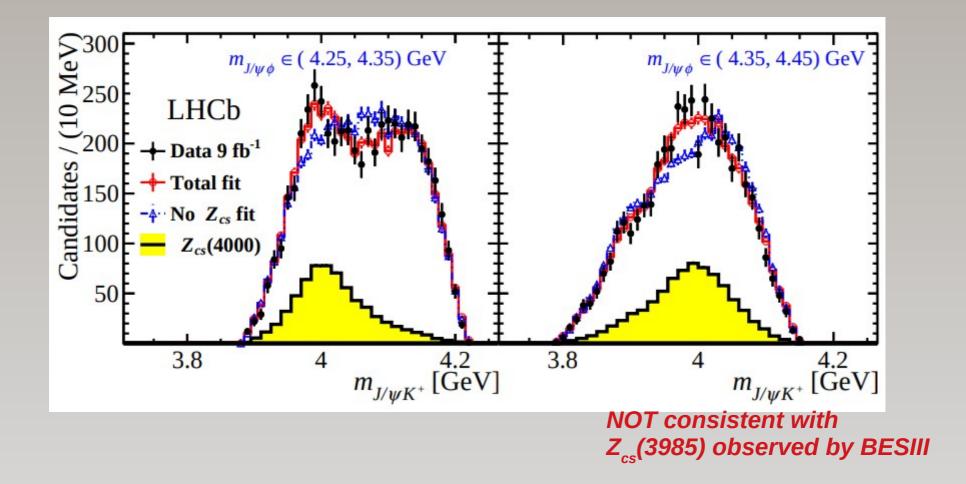



LHCb-PAPER-2020-044

- Model improvements
 - Include tails of K* resonances at ~1.4 GeV
 - Add more $X \rightarrow J/\psi \phi$ and $Z_{cs} \rightarrow J/\psi K^+$ states
 - firstly with $J^{P}=1^{+}$ (largest improvement),
 - later with other quantum numbers
 - \rightarrow found a need for 3 more X states and 2 Z_{cs} states

with $>5\sigma$ significance (except for one X)

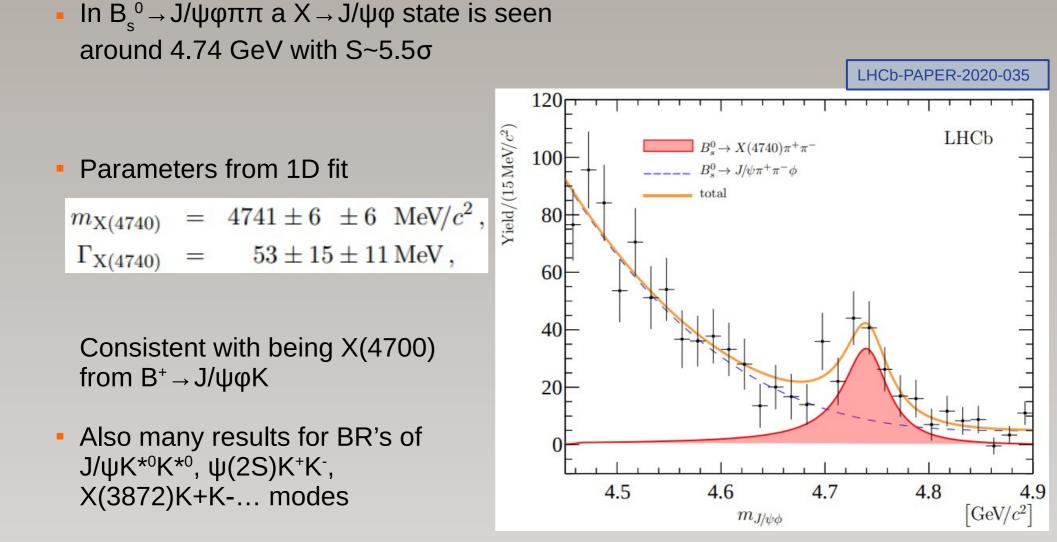
new default model: 9K* + 7X + 1X(NR) + 2Z_{cs}



Demonstration of effect of adding Z_{cs} states

LHCb-PAPER-2020-044

• The "narrow" Z_{cs} at 4 GeV is evident



Resulting parameters for X and Z resonances Determine J^P for all states except

LHCb-PAPER-2020-044

X(4150), X(4630) and Z_{cs}(4220) Significance $[\times \sigma]$ M_0 [MeV] $\Gamma_0 [MeV]$ FF [%] Contribution $X(2^-)$ can't rule out other \mathbf{J}^p $4146 \pm 18 \pm 33$ $135 \pm 28 {+59 \atop -30}$ $2.0 \pm 0.5 \substack{+0.8 \\ -1.0}$ 4.8(8.7)X(4150) $X(1^-)$ can't rule out 2⁻ New X $4626 \pm 16^{+18}_{-110}$ $174 \pm 27 \, {}^{+\, 134}_{-\, 73}$ $2.6 \pm 0.5 ^{+2.9}_{-1.5}$ X(4630)5.5(5.7) $20 \pm 5^{+14}_{-7}$ All $X(0^+)$ Seen in Run1 $77 \pm 6^{+10}_{-8}$ $5.6 \pm 0.7 \substack{+2.4 \\ -0.6}$ X(4500)20(20) $4474 \pm 3 \pm 3$ $87 \pm 8^{+16}_{-6}$ $8.9 \pm 1.2^{+4.9}_{-1.4}$ $4694 \pm 4^{+16}_{-3}$ X(4700)17(18) $28 \pm 8^{+19}_{-11}$ $NR_{J/\psi\phi}$ 4.8(5.7) $26 \pm 3^{+8}_{-10}$ All $X(1^+)$ $4118 \pm 11 \, {}^{+\, 19}_{-\, 36}$ $162 \pm 21 \, {}^{+24}_{-49}$ $17 \pm 3^{+19}_{-6}$ X(4140)13(16) $4294 \pm 4^{+3}_{-6}$ $2.8 \pm 0.5 ^{+0.8}_{-0.4}$ X(4274) $53\pm5\pm5$ 18(18) $126 \pm 15^{\,+37}_{\,-41}$ $7.2 \pm 1.0 \, {}^{+4.0}_{-2.0}$ $4684 \pm 7^{\,+\,13}_{\,-\,16}$ X(4685)15(15) $25 \pm 5^{+11}_{-12}$ All $Z_{cs}(1^+)$ New Z_{cs} $Z_{cs}(4000)$ $4003 \pm 6^{+4}_{-14}$ 15(16) $9.4 \pm 2.1 \pm 3.4$ $131 \pm 15 \pm 26$ $Z_{cs}(4220)^{can't rule out 1}_{5.9}(8.4)$ $4216 \pm 24 \, {}^{+\,43}_{-\,30}$ $233 \pm 52 \, {}^{+97}_{-73}$ $10 \pm 4^{+10}_{-7}$

One more $X \rightarrow J/\psi \phi$ state

