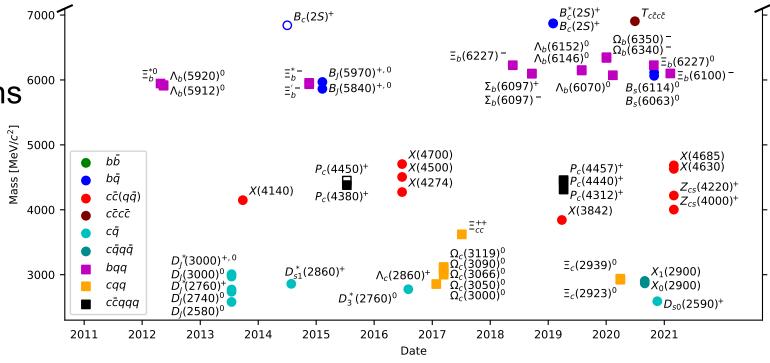


Beauty-hadron spectroscopy at LHCb

Hongjie Mu
Tsinghua University
On behalf of the LHCb collaboration


EPS-HEP Conference 2021, July 29, 2021

Introduction

Study of heavy-hadron spectroscopy helps to understand the hadronic structure and how QCD works

>LHC observed 59 new hadrons

Mainly from LHCb

59 new hadrons at the LHC

 $\bullet_{\chi_{b1}(3P)}^{\chi_{b2}(3P)}$

[LHCB-FIGURE-2021-001]

 $o^{\chi_b(3P)}$

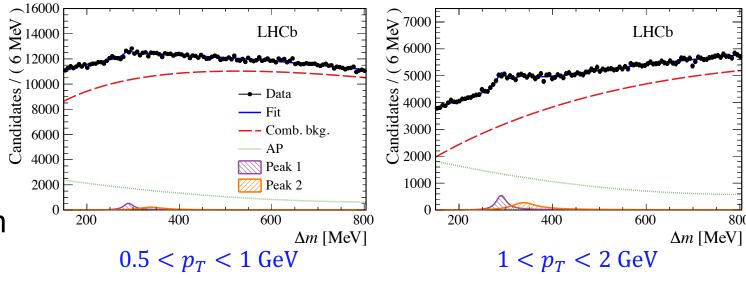
Recent results of beauty-hadron spectroscopy

- ➤ Observation of new excited B_S^0 states in B^+K^- [EPJC 81 (2021) 7, 601]
- >Observation of a new \mathcal{E}_b^0 state in $\mathcal{E}_b^-\pi^+$ [PRD 103 (2021) 012004]
- ► Observation of two new excited \mathcal{E}_b^0 states in $\Lambda_b^0 K^- \pi^+$ New!

 [LHCb-PAPER-2021-025, in preparation]
- Search for \mathcal{E}_{bc}^0 and Ω_{bc}^0 decaying to $\Lambda_c^+\pi^-$ and $\mathcal{E}_c^+\pi^-$ [arXiv:2104.04759]

Observation of new excited B_s^0 states in B^+K^-

[EPJC 81 (2021) 7, 601]

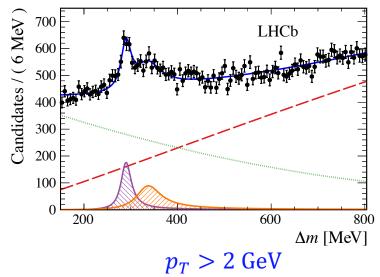

Observation of new excited B_s^0 states in B^+K^-

➤ Data sample in 2011-2018

•
$$B^+ \rightarrow J/\psi (\rightarrow \mu^+ \mu^-) K^+$$

•
$$B^+ \rightarrow \overline{D}^0 (\rightarrow K^+\pi^-)\pi^+$$

 \triangleright Peaks in B^+K^- mass spectrum



Simultaneous fit in $p_T(K^-)$ bins

- $0.5 < p_T < 1 \text{ GeV}$
- $1 < p_T < 2 \text{ GeV}$
- $p_T > 2 \text{ GeV}$

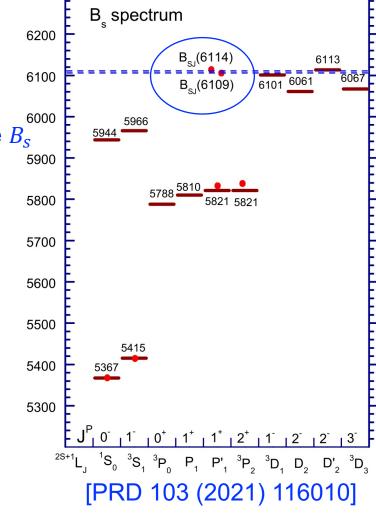
➤ Local significance

- 20σ for one-peak vs background-only hypothesis
- 7.7σ for two-peak vs one-peak hypothesis

 $\Delta m \equiv m_{R^+K^-} - m_{R^+} - m_{K^-}$

Observation of new excited B_s^0 states in B^+K^-

>Two models

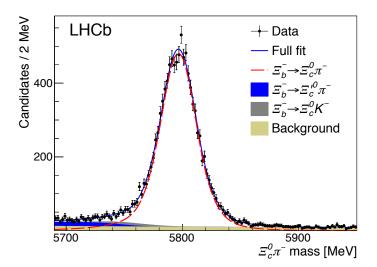

• $B_S^{**0} \to B^+ K^$ $m_1 = 6063.5 \pm 1.2 (\text{stat}) \pm 0.8 (\text{syst}) \text{ MeV}$ $\Gamma_1 = 26 \pm 4 (\text{stat}) \pm 4 (\text{syst}) \text{ MeV}$ $m_2 = 6114 \pm 3 (\text{stat}) \pm 5 (\text{syst}) \text{ MeV}$ $\Gamma_2 = 66 \pm 18 (\text{stat}) \pm 21 (\text{syst}) \text{ MeV}$ • $B_S^{**0} \to B^{*+} [B^+ \gamma] K^-$, with γ missed $m_1 = 6108.8 \pm 1.1 (\text{stat}) \pm 0.7 (\text{syst}) \text{ MeV}$ $\Gamma_1 = 22 \pm 5 (\text{stat}) \pm 4 (\text{syst}) \text{ MeV}$

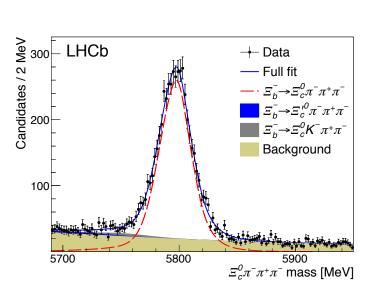
 $m_2 = 6158 \pm 4(\text{stat}) \pm 5(\text{syst}) \text{ MeV}$

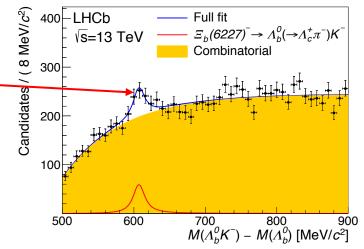
 $\Gamma_2 = 72 \pm 18(\text{stat}) \pm 25(\text{syst}) \text{ MeV}$

- Consistent with D-wave B_s
- \triangleright A single resonance decays to B^+K^- and $B^{*+}K^-$ is disfavored but cannot be excluded
- \triangleright Production ratio relative to B_{s2}^{*0} :

•
$$R \equiv \frac{\sum \sigma(B_S^{**0}) \times \mathcal{B}(B_S^{**0} \to B^{(*)} + K^-)}{\sigma(B_{S2}^{*0}) \times \mathcal{B}(B_{S2}^{*0} \to B^+ K^-)} = 0.87 \pm 0.15 \text{(stat)} \pm 0.19 \text{(syst)}$$

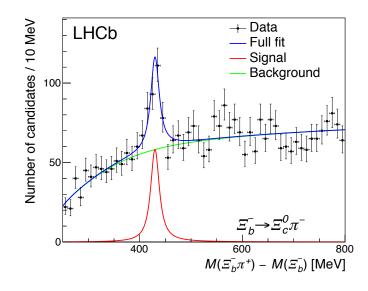


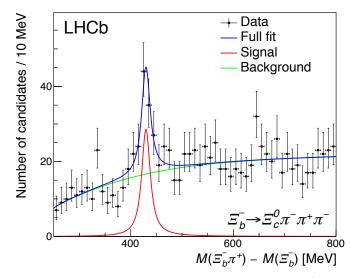

Observation of a new \mathcal{Z}_b^0 state in $\mathcal{Z}_b^-\pi^+$


[PRD 103 (2021) 012004]

Observation of a new \mathcal{Z}_b^0 state in $\mathcal{Z}_b^-\pi^+$

- \triangleright Search for isospin partner of $\mathcal{E}_{h}(6227)$
 - $\mathcal{E}_b(6227)^-$ observed in $\Lambda_b^0K^-$ and $\mathcal{E}_b^0\pi^-$
- ➤ Data sample in 2011-2018
 - $\mathcal{E}_b^- \to \mathcal{E}_c^0 (\to pK^-K^-\pi^+)\pi^-$
 - $\mathcal{Z}_{b}^{-} \to \mathcal{Z}_{c}^{0} (\to pK^{-}K^{-}\pi^{+})\pi^{-}\pi^{+}\pi^{-}$
- ►Improved measurement of \mathcal{E}_b^- mass (only $\mathcal{E}_b^- \to \mathcal{E}_c^0 \pi^-$)
 - $m(\Xi_b^-) = 5797.33 \pm 0.24 \pm 0.29 \text{ MeV}$





[PRL 121 (2018) 072002]

Observation of a new \mathcal{Z}_b^0 state in $\mathcal{Z}_b^-\pi^+$

- \triangleright Peak in $\mathcal{E}_b^-\pi^+$ mass spectrum (10 σ)
 - $m(\Xi_b(6227)^0) m(\Xi_b^-) = 429.8^{+1.4}_{-1.5} \pm 0.3 \text{ MeV}$
 - $m(\Xi_b(6227)^0) = 6227.1^{+1.4}_{-1.5} \pm 0.5 \text{ MeV}$
 - $\Gamma(\mathcal{E}_b(6227)^0) = 18.6^{+5.0}_{-4.1} \pm 1.4 \text{ MeV}$
- \triangleright Improved results of charged isospin partner in $\Lambda_b^0 K^-$
 - $m(\mathcal{E}_b(6227)^-) m(\Lambda_b^0) = 608.3 \pm 0.8 \pm 0.3 \text{ MeV}$
 - $m(\Xi_b(6227)^-) = 6227.9 \pm 0.8 \pm 0.5 \text{ MeV}$
 - $\Gamma(\Xi_h(6227)^-) = 19.9 \pm 2.1 \pm 1.5 \text{ MeV}$
- > Relative production rate at $\sqrt{s} = 13 \text{ TeV}$
 - $\frac{f_{\Xi_b(6227)^0}}{f_{\Xi_b^-}} \mathcal{B}(\mathcal{E}_b(6227)^0 \to \mathcal{E}_b^- \pi^+) = 0.045 \pm 0.008 \pm 0.004$

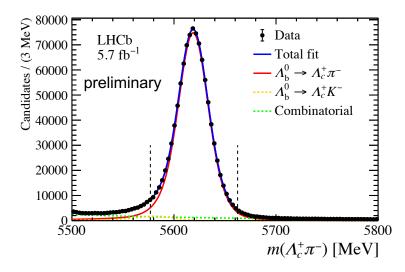
Observation of two new excited \mathcal{Z}_b^0 states in $\Lambda_b^0 K^- \pi^+$

[LHCb-PAPER-2021-025, in preparation]

Observation of two new excited \mathcal{E}_b^0 states in $\Lambda_b^0 K^- \pi^+$

- \triangleright Two narrow 1D \mathcal{Z}_b^0 states predicted by theory
- ➤ Data sample in 2015-2018

•
$$\Lambda_b^0 \to \Lambda_c^+ (\to pK^-\pi^+)\pi^-$$


•
$$\Lambda_b^0 \to \Lambda_c^+ (\to pK^-\pi^+)\pi^-\pi^+\pi^-$$

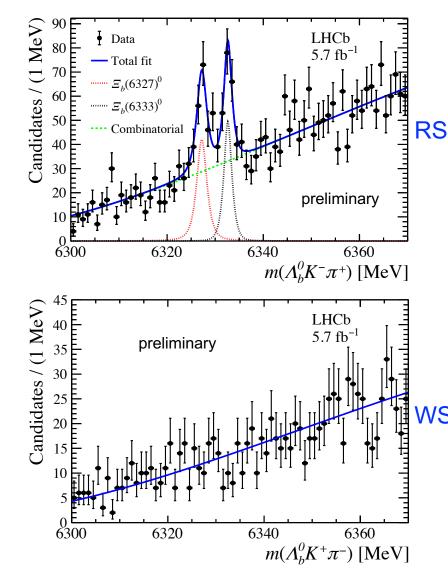

- > Redefine mass for better resolution
 - $m(\Lambda_b^0 K^- \pi^+) \equiv m_{\Lambda_b^0 K^- \pi^+} m_{\Lambda_b^0} + 5619.62$ MeV

Decay mode	$\Xi_b(6327) [3/2^+ (1D)]$	$\Xi_b(6330)^0 [5/2^+ (1D)]$
$\Xi_b'(5935) \pi$	0.39^{p}	0.09^{f}
$\Sigma_b(5815) \ K$	1.73^{p}	0.00^{f}
$\Xi_b^*(5955)\pi$	0.09^p , 0.15^f	0.51^p , 0.07^f
$\Sigma_b^*(5835) K$	0.02^p , 0.00^f	0.09^p , 0.00^f
Total width	2.38	0.76

[Bing Chen et. al. PRD 100 (2019) 094032]

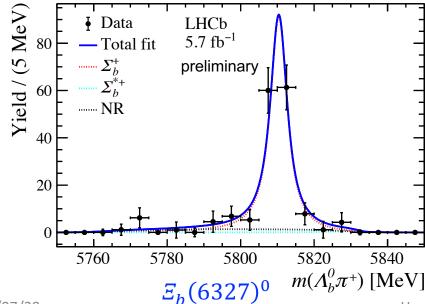
 \mathcal{M}_b^0 mass [PRL 119 (2017) 062001]

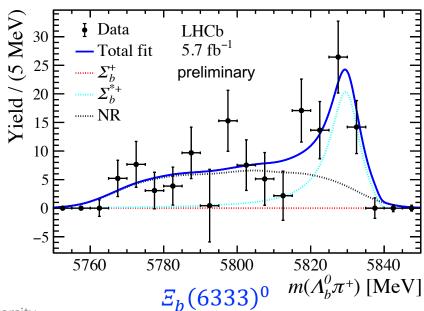
Observation of two new excited \mathcal{E}_b^0 states in $\Lambda_b^0 K^- \pi^+$


- \triangleright No peaks in $\Lambda_h^0 K^+ \pi^-$ (Wrong-Sign) mass spectrum
- > Two peaks in $\Lambda_h^0 K^- \pi^+$ (Right-Sign) mass spectrum
 - $m_{\Xi_h(6327)^0} = 6327.28^{+0.23}_{-0.21}(\text{stat}) \pm 0.08(\text{syst}) \pm 0.24(m_{\Lambda_h^0}) \text{ MeV}$
 - $m_{\Xi_b(6333)^0} = 6332.69^{+0.17}_{-0.18}(\text{stat}) \pm 0.03(\text{syst}) \pm 0.22(m_{\Lambda_b^0}) \text{ MeV}$
 - $\Gamma_{E_h(6327)^0}$ < 2.20 (2.56) MeV at 90% (95%) CL
 - $\Gamma_{E_h(6333)^0} < 1.55 (1.85)$ MeV at 90% (95%) CL
 - $\Delta m \equiv m_{\Xi_b(6333)^0} m_{\Xi_b(6327)^0} = 5.41^{+0.26}_{-0.27} ({\rm stat}) \pm 0.06 ({\rm syst}) \,{\rm MeV}$

	Decay mode	$\Xi_b(6327) [3/2^+ (1D)]$	$\Xi_b(6330)^0 [5/2^+ (1D)]$
•	$\Xi_b'(5935) \pi$	0.39^{p}	0.09^{f}
	$\Sigma_b(5815) \ K$	1.73^{p}	0.00^{f}
)	$\Xi_b^*(5955)~\pi$	0.09^p , 0.15^f	0.51^p , 0.07^f
	$\Sigma_b^*(5835) K$	0.02^p , 0.00^f	0.09^p , 0.00^f
	Total width	2.38	0.76

Consistent with 1D \mathcal{Z}_h^0

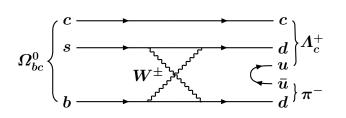

[Bing Chen et. al. PRD 100 (2019) 094032]

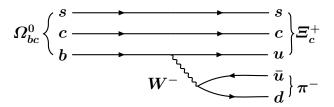

- > Significance considering systematic uncertainty
 - 9.9σ for two-peak vs background-only hypothesis
 - 5.8σ for two-peak vs one-peak hypothesis

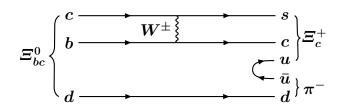
Observation of two new excited \mathcal{E}_b^0 states in $\Lambda_b^0 K^- \pi^+$

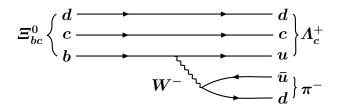
- > Resonant structure in $\Lambda_b^0 \pi^+$ mass spectrum
 - $\mathcal{E}_b(6327)^0$ predominantly decays to $\Sigma_b^+ K^-$
 - About half of $\mathcal{Z}_b(6333)^0$ decay without $\Lambda_b^0\pi^+$ resonances, the rest decay through Σ_b^{*+} intermediate structure
 - Consistent with 1D \mathcal{Z}_{b}^{0} doublets [Bing Chen et. al. PRD 100 (2019) 094032]

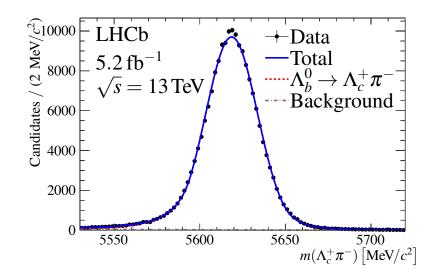
2021/07/29

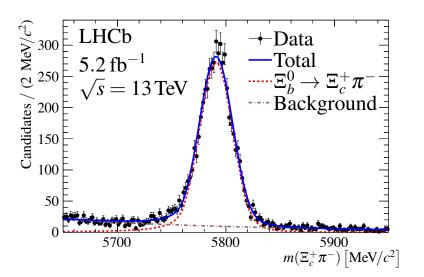

[arXiv:2104.04759]

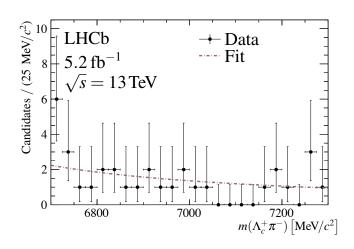

➤ Data sample

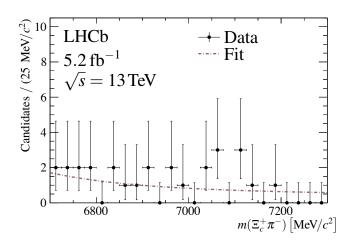

- $\Lambda_c^+ \to pK^-\pi^+$
- $\mathcal{Z}_c^+ \to pK^-\pi^+$

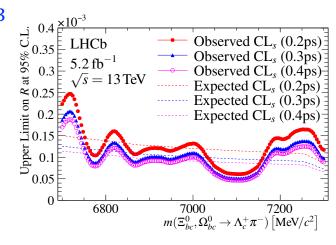

➤ Control channel

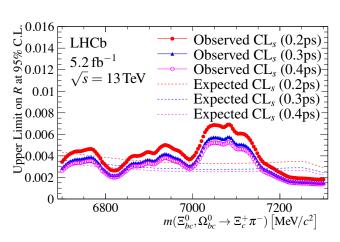

- $\Lambda_b^0 \to \Lambda_c^+ \pi^-$
- $\mathcal{E}_b^0 \to \mathcal{E}_c^+ \pi^-$

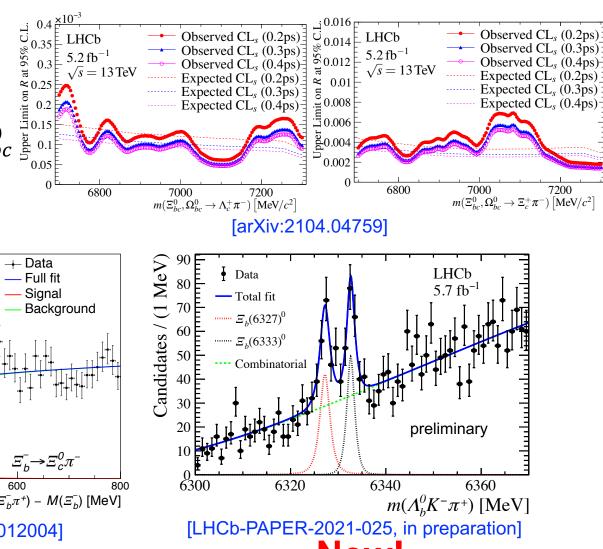


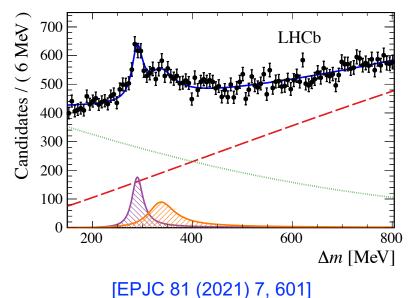


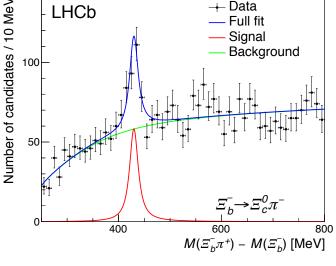





➤ No significant excess

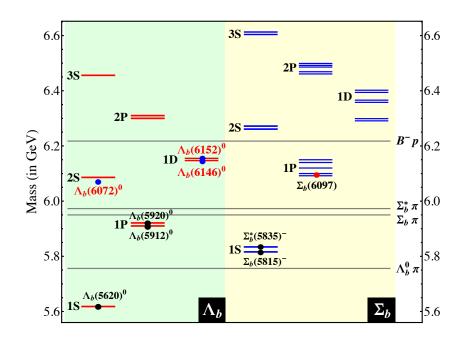

- ▶Upper limits (95% CL) on production ratio relative to $\Lambda_b^0 \to \Lambda_c^+ \pi^- (\Xi_b^0 \to \Xi_c^+ \pi^-)$
 - $\Lambda_c^+\pi^-$: 0.5×10⁻⁴ to 2.5×10⁻⁴
 - $\mathcal{E}_c^+ \pi^-$: 1.4×10⁻³ to 6.9×10⁻³



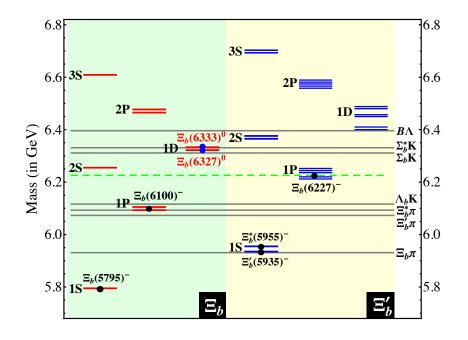


Summary

- ➤ Lots of new beauty hadrons observed at LHCb
- \triangleright Upper limits on production ratio set for \mathcal{Z}_{bc}^0 and Ω_{bc}^0


New!

Thank you!


Backup

Beauty-baryon spectroscopy

- \triangleright Beauty baryon (bqq')
 - Light diquark spin $j_{aa'} = 0$ (1): Λ_b^0 (Σ_b)
- \triangleright Beauty baryon contains one s quark (bsq)
 - Light diquark spin $j_{sq} = 0$ (1): \mathcal{E}_b (\mathcal{E}_b')

[LHCb-PAPER-2021-025, in preparation] [PRL 126 (2021) 252003] [JHEP 06 (2020) 136]

[PRD 98 (2018) 074032]

[PRD 98 (2018) 031502]

[arXiv:2104.04759]

 \triangleright Production ratio relative to $\Lambda_b^0 \to \Lambda_c^+ \pi^- (\Xi_b^0 \to \Xi_c^+ \pi^-)$

•
$$R(\Lambda_c^+\pi^-) \equiv \frac{\sigma(pp \to H_{bc}^0 X)\mathcal{B}(H_{bc}^0 \to \Lambda_c^+\pi^-)}{\sigma(pp \to \Lambda_b^0 X)\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+\pi^-)} = \frac{N(H_{bc}^0 \to \Lambda_c^+\pi^-)}{N(\Lambda_b^0 \to \Lambda_c^+\pi^-)} \cdot \frac{\varepsilon(\Lambda_b^0)}{\varepsilon(H_{bc}^0)}$$

•
$$R(\mathcal{Z}_c^+\pi^-) \equiv \frac{\sigma(pp \to H_{bc}^0 X)\mathcal{B}(H_{bc}^0 \to \mathcal{Z}_c^+\pi^-)}{\sigma(pp \to \mathcal{Z}_b^0 X)\mathcal{B}(\mathcal{Z}_b^0 \to \mathcal{Z}_c^+\pi^-)} = \frac{N(H_{bc}^0 \to \mathcal{Z}_c^+\pi^-)}{N(\mathcal{Z}_b^0 \to \mathcal{Z}_c^+\pi^-)} \cdot \frac{\varepsilon(\mathcal{Z}_b^0)}{\varepsilon(H_{bc}^0)}$$

- H_{bc}^0 represents \mathcal{Z}_{bc}^0 or Ω_{bc}^0
- Different H_{bc}^{0} mass varied from 6700 to 7300 MeV, with a step size of 4 MeV
- Considered lifetime: 0.2 ps, 0.3 ps, 0.4 ps