

Recent results in production of opencharm and charmonium states at LHCb

Qingnian Xu

On behalf of the LHCb collaboration

EPS-HEP 2021

Introduction

- **Charm** meson spectroscopy is of great interest, theoretically and experimentally, as a testing ground for quark-models predictions in the Standard Model.
- Production of conventional and exotic charm states from B-decays.
- Study the heavy **quarkonium** production can provide important information to probe the theory of strong interaction.
- The nature of **charmonium-like state** $\chi_{c1}(3872)$ is still not clear. By including the LHCb data recorded during Run1 and Run2, it is possible to measure the double-differential cross-section of $\chi_{c1}(3872)$ for the first time.

LHCb detector

Int. J. Mod. Phys A 30, 1530022 (2015)

- Designed for precision measurements in b, c flavor sectors.
- It covers a pseudo-rapidity range of 2 $< \eta < 5$.
- Run1: $\mathcal{L} = 3.0 \text{ fb}^{-1} \text{ from } pp \text{ collision}$ at 7 TeV (2011) and 8 TeV (2012) in the center-of-mass-energy.
- Run2: $\mathcal{L} = 6.0$ fb⁻¹ from *pp* collision at 13 TeV (2015-2018) in the centerof-mass-energy.

Outline

• Amplitude analysis of $B^+ \to D^+ D^- K^+$ decays

Phys. Rev. D102 (2020) 112003

- ► Observation of a new excited D_s^+ meson in $B^0 \rightarrow D^-D^+K^+\pi^-$ decays Phys. Rev. Lett. 126 (2021) 122002
- Measurement of the J/ψ production cross-section in pp collisions at $\sqrt{s} = 5$ TeV LHCb-PAPER-2021-020, in preparation
- Measurement of $\chi_{c1}(3872)$ production in pp collision at $\sqrt{s} = 8$ and 13 TeV LHCb-PAPER-2021-026, in preparation

$B^+ \to D^+ D^- K^+$ Phys. Rev. D102 (2020) 112003

- The B⁺ → D^{(*)+}D^{(*)-}K⁺ family of decays offers a good laboratory to study charmonium states.
- With unprecedented pure sample obtained by LHCb, the first
 B⁺ → D⁺D⁻K⁺ amplitude analysis is presented
- Resonances in the D^-K^+ system would indicate exotic contribution.

 $B^+ \to D^+ D^- K^+$ Phys. Rev. D102 (2020) 112003

- The projection of candidates in Dalitz plot (run II data)
- Clear excess at 8.25 GeV²/c⁴ (also observed for run 1 data) in D^-K^+ .

$B^+ \to D^+ D^- K^+$ Phys. Rev. D102 (2020) 112003

• The spin-0 and spin-2 states is necessary for $\chi_{cj}(3930) =$

Resonance	Mass (GeV/ c^2)	Width (MeV)
$\chi_{c0}(3930)$	$3.9238 \pm 0.0015 \pm 0.0004$	$17.4 \pm 5.1 \pm 0.8$
$\chi_{c2}(3930)$	$3.9268 \pm 0.0024 \pm 0.0008$	$34.2 \pm 6.6 \pm 1.1$
$X_0(2900)$	$2.866 \pm 0.007 \ \pm 0.002$	$57 \pm 12 \pm 4$
$X_1(2900)$	$2.904 \pm 0.005 \ \pm 0.001$	$110\pm11\pm4$

$B^0 \to D^- D^+ K^+ \pi^-$ Phys. Rev. Lett. 126 (2021) 122002

- ► The study of the charm-strange spectrum is rich in structures ⇒ interesting place for testing theories.
 - Some states are already experimentally well established
 - But some predicted states are still not observed
- ► D_s state have been observed in $B \rightarrow D\overline{D}K$ decays Phys.Rev.Lett.100(2008)092001
- Most studies has been focused in excited D_s^+ decaying into DK
 - Only sensitive to D_s^+ natural spin-parity states.
- The $D^+K^+\pi^-$ allows to access all spin-parity D_s states in a large mass range

	Fit fraction $(\times 10^{-2})$
$D_{s0}(2590)^+$	$63 \pm 9(\text{stat}) \pm 9(\text{syst})$
$D_{s1}(2536)^+$	$3.9 \pm 1.4(\text{stat}) \pm 0.8(\text{syst})$
NR	$51 \pm 11(\text{stat}) \pm 19(\text{syst})$
D_{s0}^+ –NR	$-18 \pm 18(\text{stat}) \pm 24(\text{syst})$
D_{s1}^{+}/D_{s0}^{+}	$6.1 \pm 2.4(\text{stat}) \pm 1.4(\text{syst})$

- Mass = $2591 \pm 6 \pm 7$ MeV
- $\Gamma = 89 \pm 16 \pm 12 \text{ MeV}$
- Best fit with $J^P = 0^-$

J/ψ production

LHCb-PAPER-2021-020

Prompt J/ψ

- Probe J/ψ production mechanism
- $c\bar{c}$ pair production: perturbative QCD
- Hadronisation: non-perturbative QCD

• J/ψ from b

- Probe b-hadron production mechanism
- Theory model: Fixed Order plus Next-to-Leading Logarithms(FONLL).

J/ψ production LHCb-PAPER-2021-020

- Integrated cross-sections ($p_{\rm T} < 20~{\rm GeV}/c$, 2.0 < y < 4.5) assuming zero polarisation
 - $\sigma_{\rm prompt} = 8.154 \pm 0.010 \; (\text{stat.}) \pm 0.283 \; (\text{syst.}) \; \mu \text{b}$
 - $\sigma_{\text{from}-b} = 0.820 \pm 0.002 \text{ (stat.)} \pm 0.034 \text{ (syst.)} \, \mu\text{b}$

- The inclusion of CGC effects achieves a reasonable agreement between data and theory for prompt J/ψ at low p_T .
- Good agreement with predictions both for prompt J/ψ and J/ψ from-b.

$\chi_{c1}(3872)$ production LHCb-PAPER-2021-026

• $\chi_{c1}(3872)$ is an exotic meson discovered in 2003 by Belle

Phys.Rev.Lett. 91 (2003) 262001

• $J^{PC} = 1^{++}$ determined by LHCb

Phys.Rev. D 92 (2015) 011102

- The nature of $\chi_{c1}(3872)$ still not clear.
- ATLAS measurement consistent with NLO NRQCD prediction for $\chi_{c1}(2P) D^0 \overline{D^{*0}}$ JHEP 01 (2017) 117
- Recently LHCb measured the multiplicity dependent prompt $\chi_{c1}(3872)$ production consistent with a compact tetraquark.

Phys.Rev.Lett. 126 (2021) 092001

- The prompt ratio increase as a function of p_T , showing that $\chi_{c1}(3872)$ production is enhanced relative to prompt $\psi(2S)$ in higher p_T region.
- This flat behavior of the non-prompt ratio is set by the b-decay branching ratios.
 - 14

The double ratio cross-section of $\chi_{c1}(3872)$ relative to $\psi(2S)$ between 13 TeV and 8 TeV as a function of p_T integrated over 2.0 < y < 4.5.

- A first-order polynomial is used to fit the double ratio.
- The central value is consistent with one, the slope is consistent with zero.
- Have no dependence on p_T and center-of-mass energy.

$\chi_{c1}(3872)$ production LHCb-PAPER-2021-026

Take the cross-section of $\psi(2S)(\rightarrow \mu^+\mu^-)$ as input. LHCb, EPJC 80(2020) 185 The measured cross-section times branching fractions as a function of p_T for

- prompt $\chi_{c1}(3872)$ compared to NLO NRQCD predictions, \triangleright
 - b-decay $\chi_{c1}(3872)$ compared to FONLL predictions.

NRQCD prediction: PRD 96 (2017) 074014

 $\frac{d\sigma}{dp_T} = k \cdot \mathcal{O} <^3 P_1^{[1]} > (d\sigma({}^3P_1^{[1]}) + r \cdot d\sigma({}^3S_1^{[8]}))/m_c^2$

- Include color-singlet and color-octet contribution.
- k = 0.014 and r = 0.26 are extracted by fitting the CMS data.

- The prompt production is consistent with NLO NRQCD in the $p_T > 10$ GeV/c region.
- Might be $\chi_{c1}(2P) D^0 \overline{D^{*0}}$, produced through $\chi_{c1}(2P)$ component.

Summary

- Many results in open-charm and charmonium states in pp collisions at LHCb
- Recent results are reported in this talk
 Open-charm
 - Amplitude analysis of $B^+ \to D^+ D^- K^+$ decays
 - Observation of a new excited D_s^+ meson in $B^0 \rightarrow D^- D^+ K^+ \pi^-$ decays Charmonium
 - Measurement of the J/ψ production cross-section in pp collisions at $\sqrt{s} = 5$ TeV Charmonium-like
 - Measurement of $\chi_{c1}(3872)$ production in pp collision at $\sqrt{s} = 8$ and 13 TeV
- These results provide tests of the predictions from QCD models.

Thanks!