Quarkonium production in pp, p-Pb, and peripheral Pb-Pb collisions with ALICE

Yvonne Pachmayer for the ALICE Collaboration (Physikalisches Institut of the Heidelberg University)

Physics motivation

- pp collisions
 - Study production mechanisms at the partonic level \rightarrow benchmark for perturbative and non-perturbative quantum chromodynamic (QCD) models
 - High-multiplicity regime: study role of multiple parton interactions (MPIs) T. Sjöstrand, M. van Zijl, PRD36(1987)2019
 - Reference measurements for p-Pb and Pb-Pb analyses
- p-Pb collisions
 - Investigate so-called cold-nuclear-matter effects
 - Possible final state interactions
- Pb-Pb collisions photonuclear interactions within hadronic collisions
 - Probe the gluon density down to very low Bjørken-x

ALICE detector

- Quarkonium measurements down to $p_T = 0$
 - Central barrel: inclusive, prompt/non-prompt J/ ψ
 - Muon arm: inclusive J/ ψ , ψ (2S), Υ (1S), Υ (2S), Υ (3S)

ALI-PUB-483546

 e^+

Midrapidity (|y| < 0.9): Inner Tracking System **Time Projection Chamber Transition Radiation Detector** Electromagnetic Calorimeter

Forward(-4 < y < -2.5): Muon Tracking Chambers Muon Trigger Chambers

Charmonium cross sections

- Hardening of the spectra with increasing \sqrt{s}
- $\psi(2S) / J/\psi$ ratio exhibits increasing trend with p_T

Precise measurements at different centre-of-mass energies at mid- and forward rapidity down to $p_T = 0$

- $\psi(2S) / J/\psi$ ratio (w/o FONLL): still some tension between data and calculation

J/ ψ : NRQCD+CGC (+FONLL) calculations describe the p_T -differential and inclusive cross section vs \sqrt{s} well

NRQCD+CGC: PRL113(2014)192301 NRQCD: PRL106(2011)42002, PRL106(2011)022003 FONLL: JHEP10(2012)137

Non-prompt J/ψ and beauty production cross section

- extracted via small (~11%) extrapolation
 - FONLL calculations in good agreement

EPS 2021

Y. Pachmayer (Heidelberg University)

ALI-PREL-329511

FONLL: JHEP10(2012)137

pp

Multiplicity-dependent quarkonium measurements J/ψ mid-y

EPS 2021

Y. Pachmayer (Heidelberg University)

bb

Multiplicity-dependent quarkonium measurement

forward-y

- Quarkonium normalised yields at forward-y compatible with linear dependence on multiplicity at mid-y
- Similar multiplicity dependence for charmonia and bottomonia
- at high multiplicity

EPS 2021

Double ratio of normalised yields of $\psi(2S)$ / J/ ψ described by comovers model at low multiplicity, but underestimated

pp

J/ ψ and ψ (2S) production

EPS 2021

Y. Pachmayer (Heidelberg University)

Qualitatively described by models including final-state interactions

J/ψ production at midrapidity

- Inclusive and prompt J/ ψ : suppression at low p_T , described by models, with modified nuclear PDFs and also including energy loss
- Non-prompt J/ ψ : consistent with EPPS16 parameterisations (suggesting little shadowing)

$\Upsilon(nS)$ production

- First measurement of $\Upsilon(3S)$

Y. Pachmayer (Heidelberg University)

Similar suppression for $\Upsilon(1S)$ and $\Upsilon(2S)$ at forward-y and backward-y

E. Ferreiro and J. Lansberg JHEP10(2018)094

Comovers model predicts an ordering in the suppression of $\Upsilon(nS)$ at backward-y

J/ ψ : low-p_T and coherent photoproduction

- Low- p_T : R_{AA} always larger than hadronic R_{AA} (reference interval 1-2 GeV/c)
- Coherent photoproduction: increase of cross section with energy
 - Models with modification of photon flux (purely electromagnetic) wrt to ultra-peripheral

collisions qualitatively describe the data; some tension for semicentral collisions

ALI-PREL-367215

Y. Pachmayer (Heidelberg University)

Summary and outlook

- pp collisions
 - Precise differential measurements providing important insight into particle production
 - Described by NRQCD+CGC calculations, some tension remaining
- p-Pb collisions
 - Stronger CNM effects at low p_T
 - Relative suppression of $\psi(2S)$ wrt J/ ψ suggests final-state effects
 - Y(nS) states: Similar suppression for $\Upsilon(1S)$ and $\Upsilon(2S)$, first measurement of $\Upsilon(3S)$
 - Hint that p-Pb is not a simple case for studying CNM effects anymore
- Pb-Pb collisions coherent photoproduction
 - Measurements qualitatively described by UPC models; some tension in semicentral collisions
- **Outlook Run 3 and 4** physics programme
 - pp (also dedicated HM triggers): target luminosity: 200 pb⁻¹
 - p-Pb: target luminosity 0.3 pb⁻¹

EPS 2021

Y. Pachmayer (Heidelberg University)

Multiplicity dependence of quarkonium: faster than linear increase of J/ ψ yields at midrapidity, trend described by models

ALICE: ALICE-PUBLIC-2020-005

Charmonium Cross Sections $< p_{\rm T} >$ and $< p_{\rm T}^2 >$

 J/ψ mid-y

EPS 2021

Y. Pachmayer (Heidelberg University)

ALI-PUB-318685

J/ ψ and ψ (2S) production

EPS 2021

Y. Pachmayer (Heidelberg University)

- Qualitatively described by models including final-state interactions

J/ ψ and ψ (2S) production

