Charm cross section and fragmentation fractions in pp **collisions with ALICE** L. Dello Stritto (University and INFN Salerno, Italy) on behalf of the ALICE Collaboration

26-30 July 2021

Factorization theorem: the p_{T} -differential cross sections are computed as the convolution of three terms:

1. Parton distribution functions

- The parton distribution functions $PDF(x_a, Q^2), PDF(x_b, Q^2)$ represent the probability to have each parton carrying a fraction **x**_a, **x**_b within the colliding protons
- The quark fragmentation function $D_{q \rightarrow H}(z_q, Q^2)$ represents the probability that the quark **q** fragments into the hadron **H**, carrying a fraction z_q of the quark momentum ($p_H = z p_q$)

Is charm fragmentation the same for all collision systems?

mechanisms

Factorization theorem

• The study of charm baryon production is a powerful tool to investigate the modification of the hadronization

Time Projection Chamber:

- Track reconstruction
- Particle identification via dE/dx

Time of Flight:

• Particle identification via time-of-flight measurements

Data Sample: pp collisions @5.02 TeV - 990M of MB events, $L_{INT} = (19.3 \pm 0.4) \text{ nb}^{-1}$ pp collisions @13 TeV: - 1.8B of MB events, $L_{INT} = (32 \pm 1.6) \text{ nb}^{-1}$ p-Pb collisions @5.02 TeV: - 600M of MB events, $L_{INT} = (287 \pm 11) \, \mu b^{-1}$

ALICE detector

Inner Tracking System:

- Primary and decay vertices reconstruction
- Tracking
- Multiplicity measurement with the SPD (two innermost layers of the ITS)

V0 Detectors:

- Trigger and event selection
- Multiplicity measurement based on the V0 signal amplitude

Charm-baryons reconstruction

The following charmed baryons are reconstructed:

Baryon	$M~({ m GeV/c^2})$	$\mathbf{c}\tau$ ($\mu\mathbf{m}$)	Decay	
Λ_c^+	~ 2.286	~ 61	$\mathrm{p}K^-\pi^+$, $\mathrm{p}\mathrm{K}^0_s(\longrightarrow\pi^+\pi^-)$	e
Ξ_c^0	~ 2.468	$\sim \!\! 46$	$\Xi^- e^+ \nu_e$, $\Xi^- \pi^+$	1
Ξ_c^+	~ 2.471	~ 137	$\Xi^{-}\pi^{+}\pi^{+}$	
$\Sigma_c^{0,++}$	~ 2.454	/	$\Lambda_c^+\pi^{-,+}$	
Ω^{0}_{c}	~ 2.695	~ 80	$\Omega^{-}\pi^{+}$	

- The $\Sigma^{0,++}$ decays with a BR ~100% in Λ_c . The two Λ_c decay channels pK π and pK 0 s are reconstructed
- BR($\Omega_c^0 \rightarrow \pi^+ \Omega^-$) from theory calculations Y. Hsiao et al. EPJC 80, 1066 (2020)

- HF candidates built combining pairs or **triplets of tracks** at midrapidity ($|\eta| < 0.8$)

- e⁺e⁻ collisions
- measurements. Strongly underestimates the data

Λ_{c}^{+} results in pp collisions

Christiansen & Skands, JHEP 1508 (2015) 003

Λ_{c}^{+} results in pp collisions

ŝ

- First $\Sigma_c^{0,++}(2455)$ production measurement in hadronic collisions
- The $\Sigma_c^{0,+,++}/D^0$ in pp is strongly enhanced with respect to Monash prediction tuned on e⁺e⁻ collisions

• Effects of Σ_c feed-down on Λ_c^+/D^0 $\rightarrow \Sigma_c^{0,+,++}$ feed-down could explain part of the Λ_c enhancement in pp collisions ~40% of feeddown Λ_c from $\Sigma_c^{0,+,++}$

ALI-DER-493901

- PYTHIA 8 Monash severely underpredicts both $\Sigma_c^{0,+,++}/D^0$ and $\Lambda_c^+(-\Sigma_c^{0,+,++})/\Lambda_c^+$ ratios
- PYTHIA 8 with CR describes $\Sigma_c^{0,+,++}/D^0$ but overestimates the $\Lambda_c^+(\leftarrow \Sigma_c^{0,+,++})/\Lambda_c^+$ ratio
- SHM+RQM describes both measurements
- Catania and QCM (pure coalescence) models also provide a good description of the data Song, Lii & Shao, EPJC 78 no. 4, (2018) 344

ALI-DER-493906

Ξ_c^0 and Ξ_c^+ results in pp collisions

- $\Xi_{c}^{0,+}/D^{0}$ p_{T} dependence similar to that observed for the Λ_{c}^{+}/D^{0}
- Ξ_c^0/D^0 and Ξ_c^+/D^0 in agreement within the uncertainty
- Ξ_c^0/D^0 and Ξ_c^+/D^0 significantly underestimated by the Monash Tune Additional information on the non-universality of charm fragmentation

• **CR modes** and **SHM**: significantly larger cross sections w.r.t. Monash. The predictions still underestimate the data

• **QCM**: Further enhancement but still underpredicts the measured ratio

Catania model is the one that better describes both the measured

- First Ω_c^0 production cross section BR($\Omega_c^0 \rightarrow \pi^+\Omega^-$) = (0.51 ± 0.07)% from theory calculations [<u>Y. Hsiao et al. EPJC 80, 1066 (2020)</u>]
- No clear p_T dependence observed in the Ω_c^0/D^0 ratio
- Monash Tune strongly underestimate the Ω_c^0 production cross section and the Ω_c^0/D^0 ratio • The enhancement predicted by the CR mode is not enough to describe the measurement • Further enhancement observed with the simple coalescence QCM. Still cannot represent the data

Ω_c^0 results in pp collisions

- First Ω_c^0 production cross section $BR(\Omega_c^0 \rightarrow \pi^+\Omega^-) = (0.51 \pm 0.07)\%$ from theory calculations [<u>Y. Hsiao et al. EPJC 80, 1066 (2020)</u>]
- No clear p_T dependence observed in the Ω_c^0/D^0 ratio

- Monash Tune strongly underestimate the Ω_c^0 production cross section and the Ω_c^0/D^0 ratio • The enhancement predicted by the CR mode is not enough to describe the measurement • Further enhancement observed with the simple coalescence QCM. Still cannot represent the data

	Monash	CR modes	SHM + RQM	QCM	Catania
$\Lambda_{ m c}^{+}$	Underestimate	Good	Good	/	Slightly overestimate
$\Sigma_{\rm c}^{0,++}$	Underestimate	Good	Good	Good	Good
$\Lambda_{c}^{+} \left(\leftarrow \Sigma_{c}^{0,++} \right)$	Underestimate	Overestimate	Good	Good	Good
$\Xi_{\rm c}^{0}$	Underestimate	Underestimate	Underestimate	Underestimate	Good
Ξ_{c}^{+}	Underestimate	Underestimate	Underestimate	Underestimate	Slightly underestimate
Ω_{c}^{0}	Underestimate	Underestimate	/	Underestimate	Slightly underestimate

Ω_c^0 results in pp collisions

 Coalescence also in pp collisions?

- First measurement of the charm cross section in **pp** collision at $\sqrt{s} = 5.02$ TeV at midrapidity (1yl < 0.5). Measured hadron cross sections in pp collisions at 5.02 TeV: D⁰, D⁺, D_s⁺, Λ_c^+ , Ξ_c^0
- Extrapolation of the cross section down to zero p_{T} for D_{s}^{+} , Λ_{c}^{+} and Ξ_{c}^{0}
- The contribution of the Ξ_c^0 was multiplied by a factor of 2 in order to account for the contribution from the Ξ_{c}^{+}
- Ω_c^0 not measured in pp collision at 5.02 TeV \rightarrow add an asymmetric systematic uncertainty assuming the Ω_c^0 contribution equal to the one of Ξ_c^0
- Measured cross section:

 $\left. \mathrm{d} \sigma^{\mathrm{c} \overline{\mathrm{c}}} / \mathrm{d} \mathrm{y}
ight|_{|\mathrm{y}| < 0.5} = 1165 \pm 44 (\mathrm{stat})^{+134}_{-101} (\mathrm{syst}) \ \mu \mathrm{b}$

Charm production cross section

- Charm cross section measurements at 2.76 and 7 TeV updated using the D^0 FF at 5.02 TeV
- Measurements compatible with the upper edge of the FONNL and NNLO calculations

Charm fragmentation fractions

- The hadron fragmentation fraction is calculated as the ratio of the hadron-production cross section over the sum of cross sections of all known ground states of charm hadrons

$$f(c \to H_c) = \sigma(H_c) / \Sigma_i \sigma(H_{c,i})$$

- $39.1 \pm 1.7(\text{stat})^{+2.5}_{-3.7}(\text{syst})$ D^0
- $17.3 \pm 1.8(\text{stat})^{+1.7}_{-2.1}(\text{syst})$ D^+
- $7.3 \pm 1.0(\text{stat})^{+1.9}_{-1.1}(\text{syst})$ D_s^+
- $20.4 \pm 1.3(\text{stat})^{+1.6}_{-2.2}(\text{syst})$ $\Lambda_{\rm c}^+$
- $8.0 \pm 1.2(\text{stat})^{+2.5}_{-2.4}(\text{syst})$ 2x to account for the Ξ_{c}^+ $\Xi_{\rm c}^0$

 $15.5 \pm 1.2(\text{stat})^{+4.1}_{-1.9}(\text{syst})$ D^{*+}

feeds into the D⁰ and D⁺ mesons

• Measurement of the charm fragmentation fractions in **pp collision at** $\sqrt{s} = 5.02$ TeV at midrapidity (1)/ < 0.5)

Luigi Dello Stritto, EPS 2021, Hamburg (Germany)

12

- - or multiplicity dependence of hadronisation?

Λ_c in p-Pb collisions

- Non-universality of the charm fragmentation fractions
 - → Strong enhancement of the baryon-over-meson ratio in pp collisions w.r.t. e+e⁻ collisions
 - → Simple string fragmentation model (PYTHIA Monash), with FF tuned on e+e- measurements cannot describe data
 - → New models with additional hadronization mechanism for charm quark under investigation
 - \rightarrow Catania model provides a decent description of all the measured hadron over meson ratios.
- Charm cross section and charm fragmentation fractions in pp collisions at 5.02 TeV at midrapidity
 - \rightarrow Measurements compatible with the upper edge of the FONNL and NNLO calculations

• Λ_{c} + cross section measurement in p-Pb collisions at 5.02 TeV extended down to zero p_{T} \rightarrow Toward charm cross section in p-Pb collisions at midrapidity

BACKUP

The following charmed baryons are reconstructed:

Baryon	$M~({ m GeV/c^2})$	$\mathbf{c}\tau$ ($\mu\mathbf{m}$)	Decay	
Λ_c^+	~ 2.286	~ 61	$\mathrm{p}K^-\pi^+$, $\mathrm{p}\mathrm{K}^0_s(\longrightarrow\pi^+\pi^-)$	(
Ξ_c^0	~ 2.468	$\sim \!\! 46$	$\Xi^- e^+ \nu_e$, $\Xi^- \pi^+$]
Ξ_c^+	~ 2.471	~ 137	$\Xi^{-}\pi^{+}\pi^{+}$	
$\Sigma_c^{0,++}$	~ 2.454	/	$\Lambda_c^+ \pi^{-,+}$	
Ω_c^0	~ 2.695	~ 80	$\Omega^{-}\pi^{+}$	

Hadronic decay channels:

Raw Yield • Fit of the invariant

The $\Sigma^{0,++}$ decays with a BR ~100% in Λ_c . The two Λ_c decay channels pK π and pK 0 s are reconstructed.

BR($\Omega_c^+ \rightarrow \pi^+ \Omega^-$) from theory calculations. [<u>Y. Hsiao et al. EPJC 80, 1066 (2020)</u>]

Charmed baryons reconstructions

- BR (%)
- 6.28%, 1.1%
- 1.8%, 1.43%

2.86%

7.38% *

0.51% *

- HF candidates built combining pairs or **triplets of tracks** at midrapidity ($|\eta| < 0.8$) with the proper charge-sign combination.
- **Topological** and **PID** selections to reduce the combinatorial background.

The following charmed baryons are reconstructed:

Baryon	$M~({ m GeV/c^2})$	$\mathbf{c} au$ ($\mu\mathbf{m}$)	Decay	
Λ_c^+	~ 2.286	~ 61	$\mathrm{p}K^-\pi^+$, $\mathrm{p}\mathrm{K}^0_s(\longrightarrow\pi^+\pi^-)$	(
Ξ_c^0	~ 2.468	$\sim \!\! 46$	$\Xi^- e^+ \nu_e$, $\Xi^- \pi^+$	-
Ξ_c^+	~ 2.471	~ 137	$\Xi^-\pi^+\pi^+$	
$\Sigma_c^{0,++}$	~ 2.454	/	$\Lambda_c^+ \pi^{-,+}$	
Ω^0_c	~ 2.695	~ 80	$\Omega^{-}\pi^{+}$	

Semi-leptonic decay channel:

Raw Yield

- Subtraction of the Wrong-Sign pairs from the Right-Sign ones
- The $\Sigma^{0,++}$ decays with a BR ~100% in Λ_c . The two Λ_c decay channels pK π and pK $_s$ are reconstructed.
- BR($\Omega_c^+ \rightarrow \pi^+ \Omega^-$) from theory calculations. [<u>Y. Hsiao et al. EPJC 80, 1066 (2020)</u>]

Charmed baryons reconstructions

- 6.28%, 1.1%
- 1.8%, 1.43%

2.86%

7.38% *

0.51% *

• **Topological** and **PID** selections to reduce the combinatorial background.

CERN

Λ_c^+ production

- The Λ_c^+/D^0 ratio measured in pp collisions at 13TeV is compatible with the one observed at 5TeV.
- First production measurement for $\Sigma_{c^{0,++}}(2455)$ in hadronic collisions.

- PYTHIA 8 Monash severely underpredicts both $\Sigma_c^{0,+,++}/D^0$ and $\Lambda_c^+(\leftarrow \Sigma_c^{0,+,++})/\Lambda_c^+$ ratios.
- PYTHIA 8 with CR describes $\Sigma_c^{0,+,++}/D^0$ but overestimates the $\Lambda_c^+(\leftarrow \Sigma_c^{0,+,++})/\Lambda_c^+$ ratio.
- SHM+RQM describes both measurements.
- Catania and QCM (pure coalescence) models also provide a good description of the data. <u>arXiv:2012.12001</u>

$\Sigma_c^{0,+,++}$ results

JHEP 1508 (2015) 003 <u>PLB 795 117-121 (2019)</u>

EPJC 78 no. 4, (2018) 344

ALI-PUB-487396

Ξ_c^0 and Ξ_c^+ production

