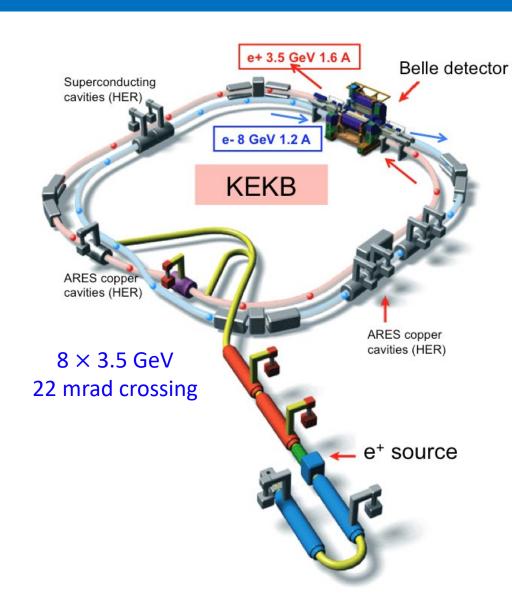
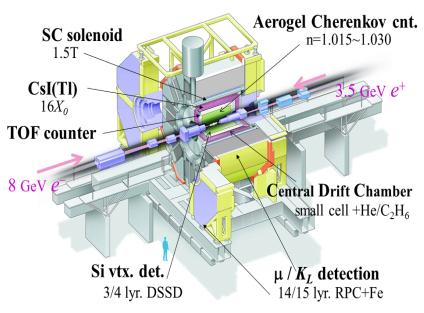
Charmed Baryon Results from Belle

Yubo Li

on behalf of Belle collaboration


Institute of modern Physics, Fudan University


Introduction to Belle experiment

- $\Xi_c^0 \to \Xi^0 \phi (\to K^+ K^-)$
- Evidence for $\Omega_c^0 o \pi^+ \Omega(2012)^-$
- Measurements of $\mathcal{B}ig(arxappi_c^0 oarxappi^-l\,
 u\,ig)$ and $\,\mathcal{A}_{cp}$ of $\,\mathcal{E}_c^0 oarxappi^+$
- $\Xi_c^0 o \Lambda \overline{K}^{*0}$, $\Sigma^0 \overline{K}^{*0}$, and $\Sigma^+ K^{*-}$
- Masses and Widths of the $\Sigma_c(2455)^+$ and $\Sigma_c(2520)^+$
- Summary

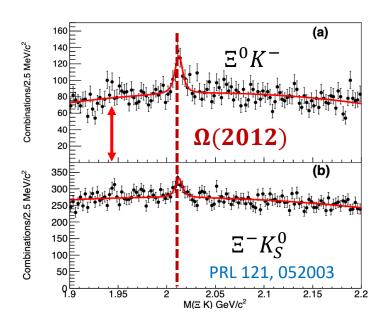
Belle experiment and data samples

Belle Detector

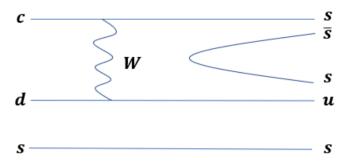
Data taking: 1999 – 2010

On/off/Scan Y(nS) peaks

Total luminosity: 980 fb⁻¹


772M B \overline{B} events @ $\Upsilon(4S)$,

Introduction to Belle experiment


$$ullet$$
 $\Xi_c^0 o \Xi^0 \phi (o K^+ K^-)$

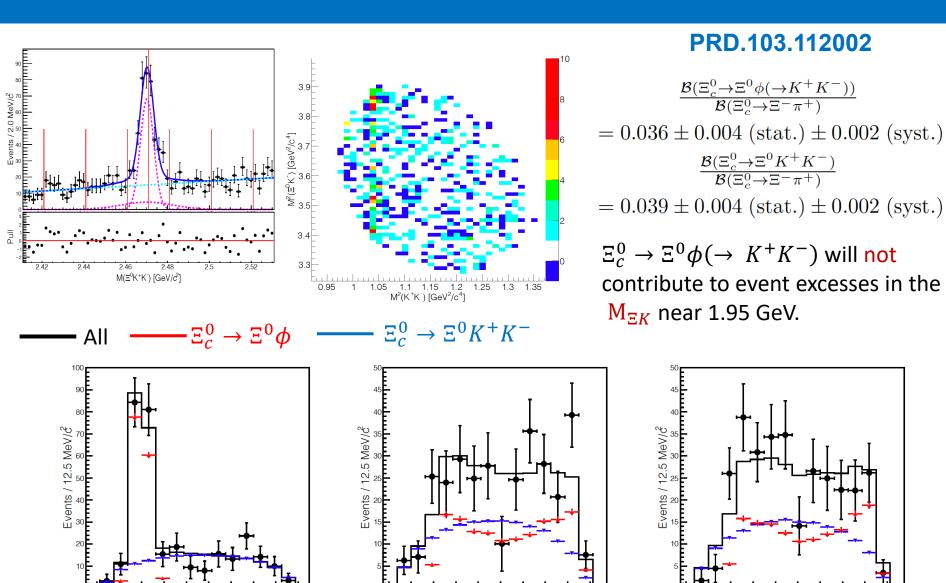
- Evidence for $\Omega_c^0 o \pi^+ \Omega(2012)^-$
- Measurements of $\mathcal{B}ig(arepsilon_c^0 o arepsilon^- l\,
 u\,ig)$ and $\,\mathcal{A}_{cp}$ of $\,\mathcal{E}_c^0 o arepsilon^-\pi^+$
- $\Xi_c^0 o \Lambda \overline{K}^{*0}$, $\Sigma^0 \overline{K}^{*0}$, and $\Sigma^+ K^{*-}$
- Masses and Widths of the $\Sigma_c(2455)^+$ and $\Sigma_c(2520)^+$
- Summary

$\Xi_c^0 \to \Xi^0 \phi (\to K^+ K^-)$

Cabbibo Allowed W-Exchange ssbar "popping"

PRD.103.112002

- Belle recently discovered $\Omega(2012)$ excited baryon via ΞK decay.
- There should be a partner of $\Omega(2012)$ near 1.95 GeV


PRD 100, 032006

• $\Xi_c^0 \to \Xi^0 \phi (K^+ K^-)$ with polarized $\phi \to K^+ K^-$ could produce peaks in the ΞK invariant mass spectra.

PRD 88, 114018

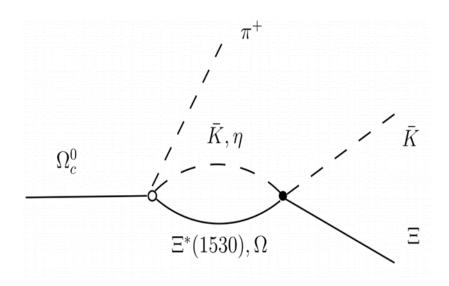
• $\Xi_c^0 \to \Xi^0 \varphi$ (K⁺K⁻) can only proceed via W-exchange together with ss production, add to our knowledge of the weak decay of charmed baryons

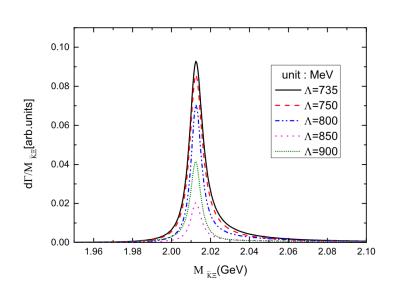
$\Xi_c^0 \to \Xi^0 \phi (\to K^+ K^-)$

 $M(\Xi^0 K^{-})$ [GeV/ c^2]

 $M(\Xi^0K^+)$ [GeV/c²]

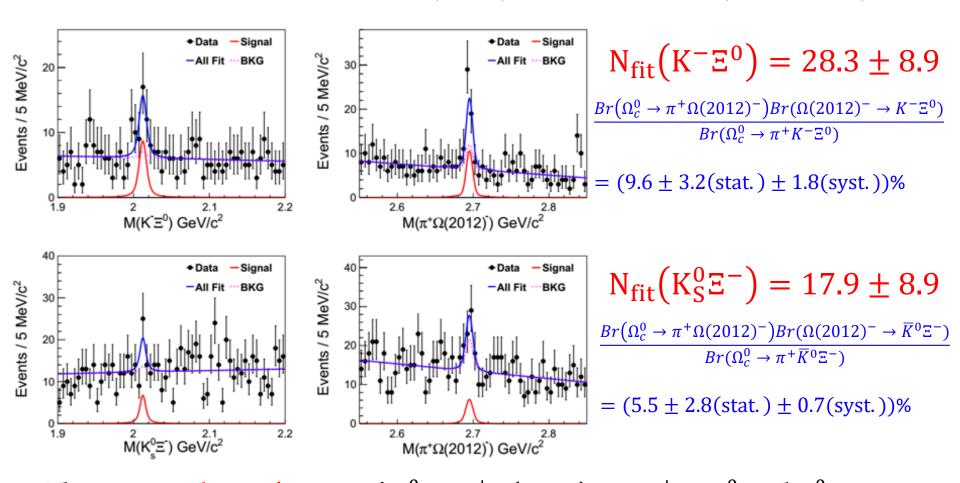
1.02 1.04 1.06 1.08


 $M(K^+K^-)$ [GeV/ c^2]

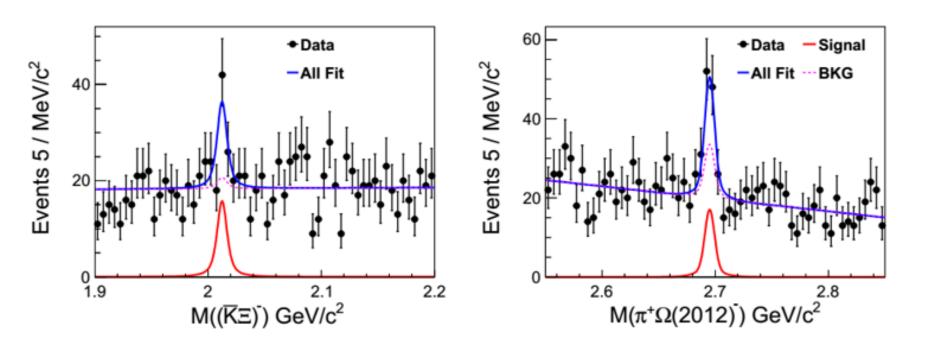

- Introduction to Belle experiment
- ullet $\Xi_c^0 o \Xi^0 \phi (o K^+ K^-)$
- Evidence for $\Omega_c^0 \to \pi^+ \Omega(2012)^-$
- Measurements of $\mathcal{B}ig(arepsilon_c^0 o arepsilon^- l\,
 u\,ig)$ and $\,\mathcal{A}_{cp}$ of $\,\mathcal{E}_c^0 o arepsilon^-\pi^+$
- $\Xi_c^0 o \Lambda \overline{K}^{*0}$, $\Sigma^0 \overline{K}^{*0}$, and $\Sigma^+ K^{*-}$
- Masses and Widths of the $\Sigma_c(2455)^+$ and $\Sigma_c(2520)^+$
- Summary

Evidence for $\Omega_c^0 \to \pi^+ \Omega(2012)^-$

Motivation:


- Searching for new production model is very important to understand the nature of $\Omega(2012)^-$;
- A theoretical study of the $\Omega(2012)^-$ in the nonleptonic weak decays of $\Omega_c^0 \to \pi^+ \overline{K} \; \Xi(1530)(\eta\Omega) \to \pi^+(\overline{K}\pi\Xi)^-$ and $(\overline{K}\Xi)^-$ was reported; the authors predicted the clearly $\Omega(2012)^-$ peak in the $(\overline{K}\Xi)^-$ invariant mass spectrum of the $\Omega_c^0 \to \pi^+(\overline{K}\Xi)^-$. [PRD 102, 076009 (2020)]

Evidence for $\Omega_c^0 \to \pi^+ \Omega(2012)^-$


• To extract the $\Omega(2012)^-$ signal events from Ω_c^0 decay, a 2D maximum-likelihood fit is performed to $M(K^-\Xi^0)/M(K_S^0\Xi^-)$ and $M(\pi^-\Omega(2012))$.

• The statistical significance of $\Omega_c^0 \to \pi^+ \Omega(2012)^- \to \pi^+ K^- \Xi^0$ and $\Omega_c^0 \to \pi^+ \Omega(2012)^- \to \pi^+ K_S^0 \Xi^-$ decays are 4.0 σ and 2.3 σ , respectively.

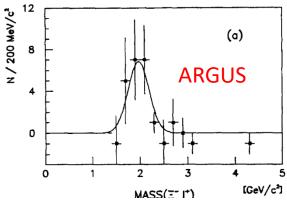
Evidence for $\Omega_c^0 \to \pi^+ \Omega(2012)^-$

• A 2D un-binned maximum-likelihood simultaneous fit is performed to $M((\overline{K}\Xi)^{-})$ and $M(\pi^{+}\Omega(2012)^{-})$ distributions.

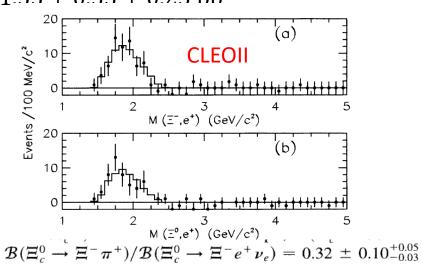
$$N_{fit} = 46.6 \pm 12.3$$

 $\frac{Br(\Omega_c^0 \to \pi^+\Omega(2012)^-) \times Br(\Omega(2012)^- \to (\overline{K}\Xi)^-)}{Br(\Omega_c^0 \to \pi^+\Omega^-)}$

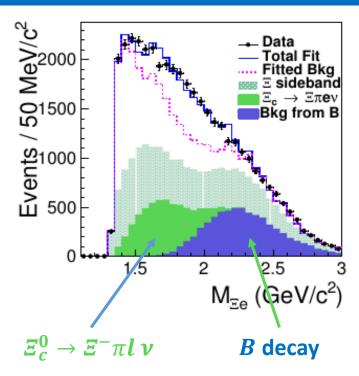
Signal significance: 4.2σ

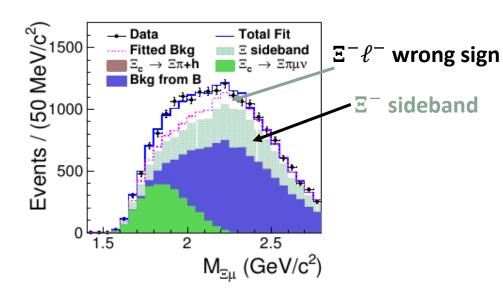

(including systematic uncertainties)

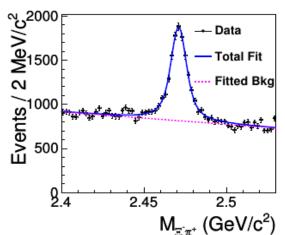
$$= 0.220 \pm 0.059(stat.) \pm 0.035(syst_9)$$


- Introduction to Belle experiment
- ullet $\Xi_c^0 o \Xi^0 \phi (o K^+ K^-)$
- Evidence for $\Omega_c^0 o \pi^+ \Omega(2012)^-$
- Measurements of ${\cal B}ig({\cal \Xi}_c^0 o{\cal \Xi}^- l\,
 u\,ig)$ and $\,{\cal A}_{cp}$ of $\,{\cal \Xi}_c^0\! o{\cal \Xi}^-\pi^+$
- $\Xi_c^0 o \Lambda \overline{K}^{*0}$, $\Sigma^0 \overline{K}^{*0}$, and $\Sigma^+ K^{*-}$
- Masses and Widths of the $\Sigma_c(2455)^+$ and $\Sigma_c(2520)^+$
- Summary

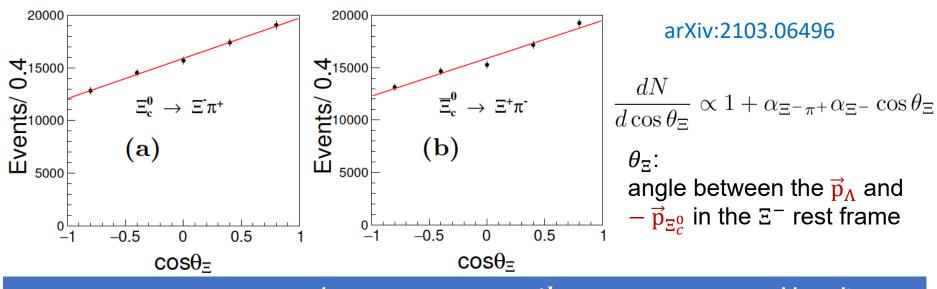
$\mathcal{B}(\mathcal{E}_c^0 \to \mathcal{E}^- l \nu)$ and \mathcal{A}_{cp} of $\mathcal{E}_c^0 \to \mathcal{E}^- \pi^+$


- ullet BESIII measured the $\mathcal{B}(\Lambda_c^+ \to \Lambda l^+ \nu)$ PRL 115, 221805(2015) & PLB 767, 42 (2017)
- $ullet \mathcal{B}(\Xi_c \to \Xi \ l^+ \nu)$ was measured by ARGUS and CLEOII
- $\Lambda e^+
 u_e \qquad (3.6 \pm 0.4)\%$ $\Lambda \mu^+
 u_\mu \qquad (3.5 \pm 0.5)\%$
- ARGUS:495.0 pb⁻¹at Υ(1*S*, 2*S*, 3*S*) and off_res energy points; **18 events;** PLB 303, 368(1993) $\sigma(e^+e^- \to \Xi_c^0 X)\mathcal{B}(\Xi_c^0 \to \Xi^-l^+\nu_l) = 0.74 \pm 0.24 \pm 0.09 \text{ pb } l^+ = \mu^+ \text{ or } e^+$
- CLEOII:2.1fb⁻¹at and bellow $\Upsilon(4S)$ energy point; **54 signal events**; PRL 74 16(1995) $\sigma(e^+e^- \to \Xi_c^0 X) \mathcal{B}(\Xi_c^0 \to \Xi^-e^+\nu_e) = 0.63 \pm 0.12 \pm 0.10 \text{ pb}$ $\sigma(e^+e^- \to \Xi_c^+ X) \mathcal{B}(\Xi_c^+ \to \Xi^0e^+\nu_e) = 1.55 + 0.33 + 0.25 \text{ ph}$




$$\frac{\text{BR}(\mathcal{Z}_c^0 \to \mathcal{Z}^- l^+ X)}{\text{BR}(\mathcal{Z}_c^0 \to \mathcal{Z}^- \pi^+)} = 0.96 \pm 0.43 \pm 0.18$$

Measurements of $\mathcal{B}(\mathcal{\Xi}_c^0 \to \mathcal{\Xi}^- l \nu)$



More types of backgrounds are considered such as:

$$\checkmark \mathcal{E}_c^0 \rightarrow \mathcal{E}^- \pi l \nu$$

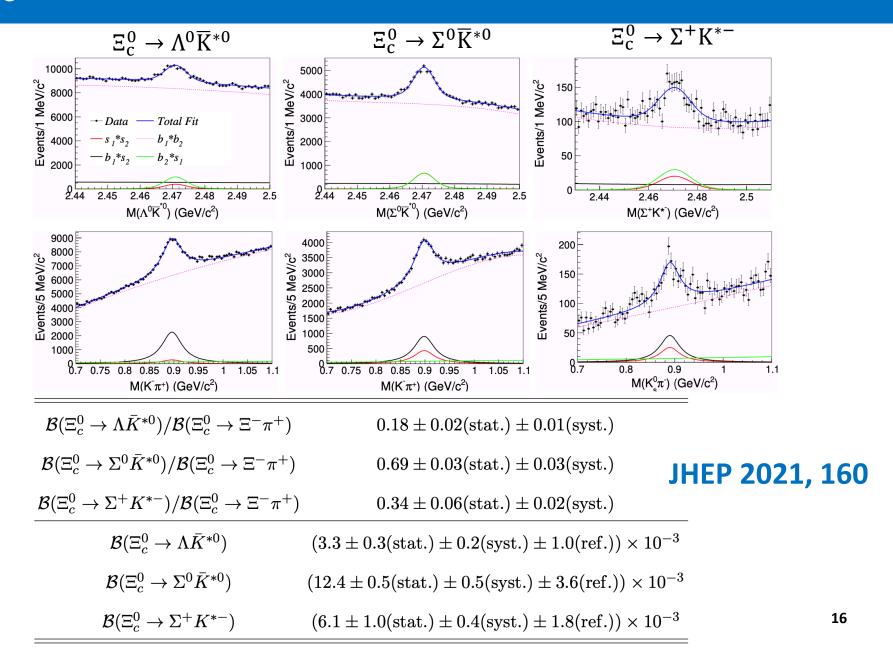
 $\checkmark B^- \rightarrow \Xi + \text{hardons}, B^+ \rightarrow D^0 e^+ \nu_e$
 $\checkmark \mathcal{E}_c^0 \rightarrow \Xi^- n\pi, n = 1,2,3 \dots$

Measurements of \mathcal{A}_{cp} of $\mathcal{\Xi}_c^0 ightarrow \mathcal{\Xi}^- \pi^+$

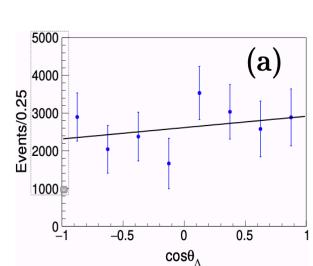
COSθ≘		COSOE	
	value	theory	old result:
$\mathcal{B}ig(\mathcal{Z}_c^0 o \mathcal{Z}^- e^+ u_eig)$	$(1.31 \pm 0.39)\%$	$\begin{array}{c} (2.38 \pm 0.44)\% \text{/} (3.4 \pm 1.7)\% \\ \text{LQCD/QCD sum rule} \end{array}$	$(1.9 \pm 1.2)\%$
${\cal B}ig({f \Xi}_c^0 o{f \Xi}^-\mu^+ u_\muig)$	$(1.27 \pm 0.39)\%$	$(2.29 \pm 0.43)\%$	
$\mathcal{B}ig(oldsymbol{arXi}_c^0 ightarrow oldsymbol{arXi}^- e^+ oldsymbol{ u}_eig)/\ \mathcal{B}ig(oldsymbol{arXi}_c^0 ightarrow oldsymbol{arXi}^- oldsymbol{\mu}^+ oldsymbol{ u}_{\mu}ig)$	1.03 ± 0.09	1.040 ± 0.004	
$lpha_{arnothing^-\pi^+}$	-0.60 ± 0.045		-0.60 ± 0.4
$lpha_{arepsilon^+\pi^-}$	0.58 ± 0.045		
$\mathcal A$	0.015 ± 0.056	$\mathcal{A}_{CP} = (\alpha^+ + \alpha^-)/$	$(\alpha^+ - \alpha^-)$

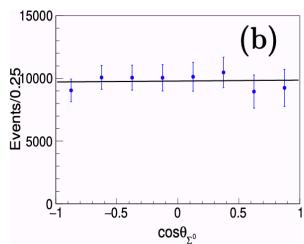
- Introduction to Belle experiment
- ullet $\Xi_c^0 o \Xi^0 \phi (o K^+ K^-)$
- Evidence for $\Omega_c^0 o \pi^+ \Omega(2012)^-$
- Measurements of $\mathcal{B}ig(arepsilon_c^0 o arepsilon^- l\,
 u\,ig)$ and $\,\mathcal{A}_{cp}$ of $\,\mathcal{E}_c^0 o arepsilon^- \pi^+$
- $\Xi_c^0 \to \Lambda \overline K^{*0}$, $\Sigma^0 \overline K^{*0}$, and $\Sigma^+ K^{*-}$
- Masses and Widths of the $\Sigma_c(2455)^+$ and $\Sigma_c(2520)^+$
- Summary

$\Xi_c^0 \to \Lambda \overline{K}^{*0}$, $\Sigma^0 \overline{K}^{*0}$, and $\Sigma^+ K^{*-}$

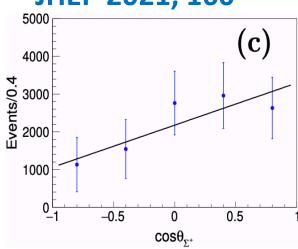

- ☐ It is difficult for the theoretical study in the non-leptonic decays of charmed baryons due to the failure of the factorization approach.
- Branching fraction measurements help to distinguish different theoretical models.
- The asymmetry parameters of Ξ_c^0 are still not well measured, which is important to test parity violation in charmed-baryon sectors.

Decay branching fractions (%) and asymmetry parameters of the Cabibbo favored $B_c \rightarrow B_n + V$ decays in QCD and $SU(3)_F$ approach.


Branching fractions	KK [1]	Zen [2]	HYZ [3]	GLT [4]
$\Xi_c^0 \to \Lambda^0 \overline{K}^{*0}$	1.55	1.15	0.46±0.21	1.37±0.26
$\Xi_c^0\to \Sigma^0\overline{K}^{*0}$	0.85	0.77	0.27±0.22	0.42±0.23
$\Xi_c^0 \to \Sigma^+ K^{*-}$	0.54	0.37	0.93±0.29	0.24±0.17


Asymmetry parameters	KK [1]	Zen [2]	GLT [4]
$\Xi_c^0 \to \Lambda^0 \overline{K}^{*0}$	0.58	+0.49	-0.67±0.24
$\Xi_c^0\to \Sigma^0\overline{K}^{*0}$	-0.87	+0.25	-0.42±0.62
$\Xi_c^0\to \Sigma^+ K^{*-}$	-0.60	+0.51	$-0.76^{+0.64}_{-0.24}$

$\Xi_c^0 o \Lambda \overline K^{*0}$, $\Sigma^0 \overline K^{*0}$, and $\Sigma^+ K^{*-}$



$\to \Lambda \overline{K}^{*0}$, $\Sigma^0 \overline{K}^{*0}$, and $\Sigma^+ K^{*-}$

JHEP 2021, 160

Note that $\alpha(\Lambda \to p\pi^-) = 0.747 \pm 0.010$ and $\alpha(\Sigma^+ \to p\pi^0) = -0.980 \pm 0.017$ from PDG.

$$\alpha(\Xi_c^0 \to \Lambda \bar{K}^{*0}) \alpha(\Lambda \to p\pi^-)$$

$$\alpha(\Xi_c^0 \to \Sigma^0 \bar{K}^{*0}) \alpha(\Sigma^0 \to \gamma \Lambda)$$

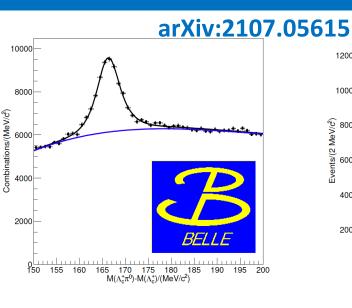
$$\alpha(\Xi_c^0 \to \Sigma^+ K^{*-}) \alpha(\Sigma^+ \to p\pi^0)$$

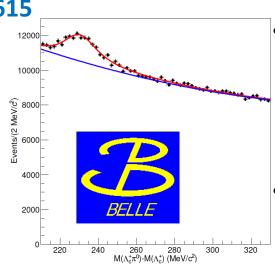
$$\alpha(\Xi_c^0 \to \Lambda \bar{K}^{*0})$$

$$\alpha(\Xi_c^0 \to \Sigma^+ K^{*-})$$

$$0.115 \pm 0.164(\mathrm{stat.}) \pm 0.038(\mathrm{syst.})$$

 $0.008 \pm 0.072(\mathrm{stat.}) \pm 0.008(\mathrm{syst.})$
 $0.514 \pm 0.295(\mathrm{stat.}) \pm 0.012(\mathrm{syst.})$
 $0.15 \pm 0.22(\mathrm{stat.}) \pm 0.05(\mathrm{syst.})$


$$-0.52 \pm 0.30 (\mathrm{stat.}) \pm 0.02 (\mathrm{syst.})$$


Introduction to Belle experiment

$$ullet$$
 $\Xi_c^0 o \Xi^0 \phi (o K^+ K^-)$

- Evidence for $\Omega_c^0 o \pi^+ \Omega(2012)^-$
- Measurements of $\mathcal{B}ig(arepsilon_c^0 o arepsilon^- l\,
 u\,ig)$ and $\,\mathcal{A}_{cp}$ of $\,\mathcal{E}_c^0 o arepsilon^- \pi^+$
- $\Xi_c^0 \to \Lambda \overline{K}^{*0}$, $\Sigma^0 \overline{K}^{*0}$, and $\Sigma^+ K^{*-}$
- Masses and Widths of the $\Sigma_c(2455)^+$ and $\Sigma_c(2520)^+$
- Summary

Masses and Widths of the $\Sigma_c(2455)^+$ and $\Sigma_c(2520)^+$

$$M_{\Sigma_c(2455)^+} - M_{\Lambda_c^+} = 166.17 \pm 0.05^{+0.16}_{-0.07} \text{ MeV}/c^2$$

 $\Gamma_{\Sigma_c(2455)^+} = 2.3 \pm 0.3 \pm 0.3 \text{ MeV}/c^2$

$$\begin{split} M_{\Sigma_c(2520)^+} - M_{\Lambda_c^+} &= 230.9 \ \pm \ 0.5^{+0.5}_{-0.1} \ \mathrm{MeV}/c^2 \\ \Gamma_{\Sigma_c(2520)^+} &= 17.2^{+2.3}_{-2.1} \ ^{+0.31}_{0.7} \ \mathrm{MeV}/c^2. \end{split}$$

Consistent with theories:

Phys. Lett. B 808, 135619

Phys. Rev. D 92, 074014

Phys. Rev. D 12 2077

- Little experimental information on the singly-charged Σ_c^+ , due to lower efficiency, higher backgrounds of π^0 transitions
- CLEOII measured the mass, set the limits on width

Phys. Rev. Lett. 86, 1167
$$M(\Sigma_c^+) - M(\Lambda_c^+) = \left(166.4 \pm 0.2 \pm 0.3\right) \, \mathrm{MeV}$$
 $M(\Sigma_c^{*+}) - M(\Lambda_c^+) = \left(231.0 \pm 1.1 \pm 2.0\right) \, \mathrm{MeV}$

- Useful to check the quark model predictions
- Critical to study the $\Lambda_c(2593)^+$, whose pole mass appears to be between the $\Sigma_c(2455)^+$ π^0 and $\Sigma_c(2455)^{++}$ π^-

Summary

•
$$\Xi_c^0 \to \Xi^0 \phi (\to K^+ K^-)$$

BELLE

- ➤ Branching fraction measured
- rightharpoonup event excesses in the $\mathrm{M}_{\Xi K}$ near 1.95 GeV not from $\Xi_c^0 \to \Xi^0 \phi$
- Evidence for $\Omega_c^0 o \pi^+ \Omega(2012)^-$
 - \triangleright Branching fraction measured with 4.2 σ signal
- Measurements of ${\cal B}ig({f {\cal E}}_c^0 o{f {\cal E}}^- l\,
 u\,ig)$ and $\,{\cal A}_{cp}$ of $\,{f {\cal E}}_c^0\! o{f {\cal E}}^- \pi^+$
 - ➤ Error reduce by 1 order
- $\Xi_c^0 \to \Lambda \overline K^{*0}$, $\Sigma^0 \overline K^{*0}$, and $\Sigma^+ K^{*-}$
 - > First observation
- Determined masses and widths of the $\Sigma_c(2455)^+$ and $\Sigma_c(2520)^+$

$$\Sigma_c(2520)^+$$

Thank you!

Backup: Jp of Xic2970

The uncertainty will be dominated by the BF of the ground-state Ξ_c baryons. Such uncertainties are avoided by calculating the ratio in a different way, with inclusive measurements of Ξ_c^0 and Ξ_c^+ and an assumption of isospin symmetry in their inclusive cross sections. We note that this assumption is confirmed within 15% in the $\Sigma_c^{(*)}$ case.

TABLE III. Result of the angular analysis of the decay $\Xi_c(2970)^+ \to \Xi_c(2645)^0 \pi^+$. Here, n.d.f. denotes the number of degrees of freedom.

Spin hypothesis	1/2	3/2	5/2
$\chi^2/\text{n.d.f.}$	9.3/9	7.7/7	7.5/6
Probability	41%	36%	28%
T		-0.5 ± 1.1	0.7 ± 1.6
ρ_{11}	0.5	0.13 ± 0.26	0.08 ± 0.27
ρ_{33}		0.37 ± 0.26	0.12 ± 0.09
ρ_{55}			0.30 ± 0.28

TABLE IV. Expected angular distribution for spin-parity hypotheses of $\Xi_c(2970)^+$ with an assumption that the lowest partial wave dominates.

J^P	Partial wave	$W(heta_c)$
1/2+	P	$1 + 3\cos^2\theta_c$
1/2-	D	$1 + 3\cos^2\theta_c$
3/2+	P	$1+6\sin^2\theta_c$
3/2-	S	1
5/2+	P	$1 + (1/3)\cos^2\theta_c$
5/2-	D	$1 + (15/4)\sin^2\theta_c$

$$J^P$$
 1/2[±] 3/2⁻ 5/2⁺ χ^2 /n.d.f. 6.4/9 32.2/9 22.3/9 Exclusion level (s.d.) ... 5.5 4.8

$$R = \frac{N^*}{\mathcal{E}^* \times \frac{N(\Xi_c^+)}{\epsilon^+}} / \frac{N'}{\sum_i \mathcal{E}'_i \times \frac{N(\Xi_c^0)_i}{\epsilon_i^0}}.$$

Backup: Xic to Xi KK

Values of Helicity Amplitudes for EvtGen HELAMP class

On-Shell Decay:

$$q^{2} = (p_{\Xi_{c}^{0}} - p_{\Xi^{0}})^{2} = m_{\varphi}^{2}$$

$$H_{+\frac{1}{2}0} = -1.091 \qquad H_{-\frac{1}{2}0} = 4.123$$

$$H_{+\frac{1}{2}+1} = -2.2305 \qquad H_{-\frac{1}{2}-1} = 4.2955$$

```
Decay Xi_c0 0.90 Xi- pi+ PHSP; 0.065 Xi0 phi HELAMP 2.2305 3.14159265359 1.091 3.14159265359 4.123 0.0 4.2955 0.0; 0.035 Xi0 K+ K- PHSP; H_{+\frac{1}{2}+1} H_{+\frac{1}{2}0} H_{-\frac{1}{2}0} H_{-\frac{1}{2}-1} Enddecay
```

In Resonant/Mixed MC, the phi is decayed through VSS as expected

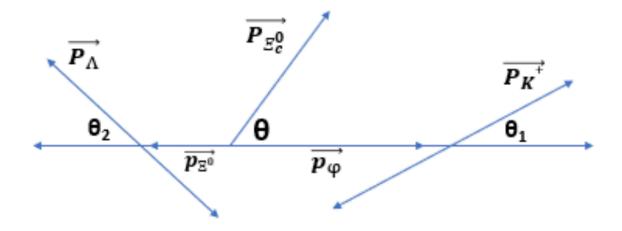
Non-Resonant
$$\Xi_c^0 \rightarrow \Xi^0 K^+ K^-$$

Resonant
$$\Xi_c^0 \rightarrow \Xi^0 (\phi \rightarrow K^+ K^-)$$

Normalization
$$\Xi_c^0 \rightarrow \Xi^- \pi^+$$

Mixed
$$\Xi_c^0 -> 0.9^* [\Xi^- \pi^+] + \\ \Xi^0 [0.065^* (\varphi -> K^+ K^-) + 0.035^* (K^+ K^-)]$$

Truth:


$$\Gamma(\Xi^0 \Phi) / \Gamma(\Xi_c^0 -> \Xi^- \pi^+) = 0.07222...$$

 $\Gamma(\Xi^0 K^+ K^-) / \Gamma(\Xi_c^0 -> \Xi^- \pi^+) = 0.03888...$

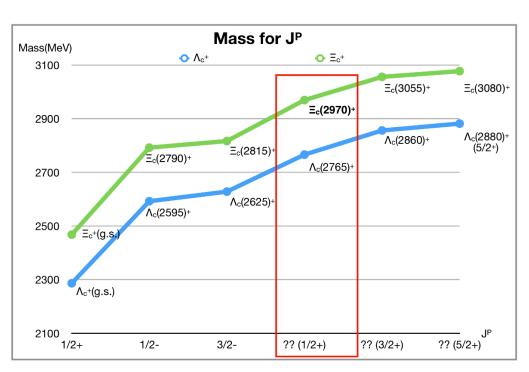
Backup: Xic to Xi KK

These topological substructures are due to the helicity angles of the XicO polarizing the in the $\frac{1}{2}$ + 1 resonant decay process

Polarization is defined:

$$\vec{P} = \frac{\hat{z} \times \vec{p}}{p}$$

 Ξ_c^0 decays with polarization $\overline{P_{\Xi_c^0}}$ into a resonant Φ ->K⁺K⁻ and "spin-conserving" Ξ^0 -> $\Lambda\pi^0$ Weak (Non-Parity Conserving) ½ -> ½ 1 decay

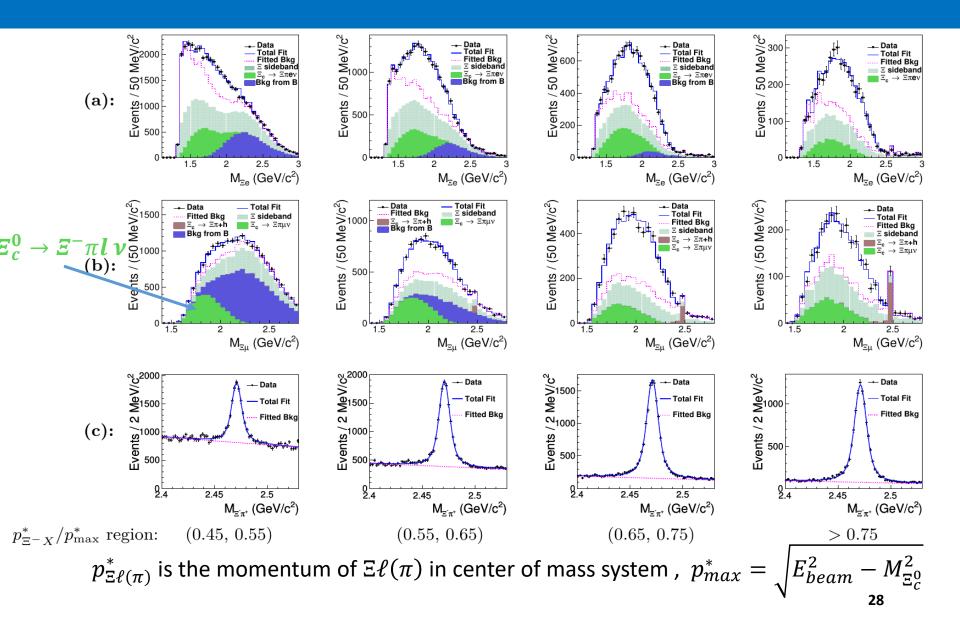

Polarization Angles θ , θ_1 , and θ_2 describe the full angular distribution of the azimuthally independent (real) final state $\Xi^0 K^+ K^-$

Backup: Sigmac mass and width

A fit is made to Fig. 2 using a third-order Chebychev polynomial function to represent the background, and a P-wave relativistic Breit-Wigner function convolved with the previously described double-Gaussian resolution function, taking into account the small mass offset. The Breit-Wigner signal function includes a Blatt-Weisskopf barrier factor, with radius parameter of R = 3 GeV.

- Introduction to Belle experiment
- Spin and parity determination of $\Xi_c(2970)^+$
- ullet $\Xi_c^0 o \Xi^0 \phi (o K^+ K^-)$
- Evidence for $\Omega_c^0 o \pi^+ \Omega(2012)^-$
- Measurements of ${\cal B}ig({\it \Xi}_c^0 o{\it \Xi}^- l\,
 u\,ig)$ and $\,{\it A}_{cp}$ of $\,{\it \Xi}_c^0 o{\it \Xi}^-\pi^+$
- $\Xi_c^0 o \Lambda \overline{K}^{*0}$, $\Sigma^0 \overline{K}^{*0}$, and $\Sigma^+ K^{*-}$
- Masses and Widths of the $\Sigma_c(2455)^+$ and $\Sigma_c(2520)^+$

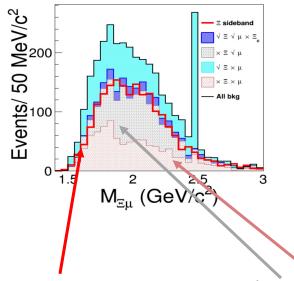
$J^p \text{ of } \Xi_c(2970)^+$



- Similar tendency in mass of the excited states of Λ_c and Ξ_c
- It is conceivable that $\Xi_c(2970)$ is the counter part of $\Lambda_c(2675)$.[PRD 75, 014006 (2007)]

PRD 103, L111101 (2021)

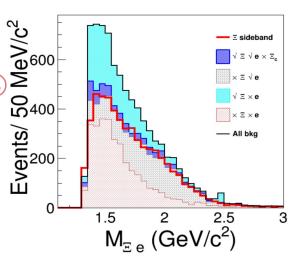
- No experimental determination J^p for Charmed baryons
- Low excited Ξ_c states can be uniquely identified as particular states predicted by the quark model
- Identification failed in higher excitation region, due to multiple states within the typical mass accuracy of quark-model predictions.


Measurements of $\mathcal{B}(\mathcal{E}_c^0 \to \mathcal{E}^- l \nu)$

Measurements of $\mathcal{B}(\mathcal{\Xi}_c^0 \to \mathcal{\Xi}^- l \nu)$

Data-driven method used to describe background shape

- •BKG candidates from generic MC
- •Filled histograms are stacked.


• \mathcal{E}^- sideband from $\Xi^-\mu^+$:		
--	--	--

- • $\Xi^-\mu^-$ selection: ①+③+④
- • \mathcal{E}^- sideband from $\Xi^-\mu^-$: ③

Background component

	Ξ	ℓ	Ξ_c^0
1	٧	×	√ or ×
2	×	٧	∨ or ×
3	×	×	×
4	٧	٧	×

 $\Xi^-\ell^-$ is the combination of the same charged Ξ^- and ℓ^-

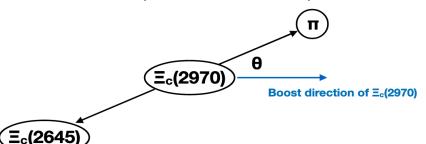
For data under resonance:

Backgrounds such as:

$$B^- \to \Xi + hardons$$

$$B^+ \rightarrow D^0 e^+ \nu_e$$

are not covered in this method


$J^p \text{ of } \Xi_c(2970)^+$

PRD 103, L111101 (2021)

• Parity:

Ratio of partial width
$$\Gamma(\Xi_c(2970) \rightarrow \Xi_c(2656)\pi)$$

$$\Gamma(\Xi_{\rm c}(2970) \rightarrow \Xi_{\rm c}'\pi)$$

• Spin:

 $\cdot \cos \theta_h, \cos \theta_c$

 θ_h : helicity angle of $\Xi_c(2970)$

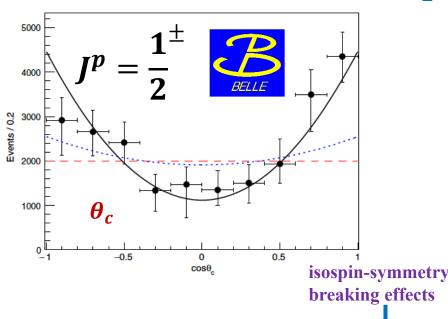
 θ_c : helicity angle of $\Xi_c(2645)$

$$\Xi_{\rm c}(2970) \to \Xi_{\rm c}(2645)\pi$$

 θ_c

• Expected helicity angle distribution $W_J(\theta)$ for $J \rightarrow 3/2+0$:

$W_{rac{1}{2}} = constant$ $oldsymbol{ heta_{oldsymbol{h}}}$
$W_{\frac{3}{2}} = \rho_{33}(1 + T(\frac{3}{2}\cos^2\theta - \frac{1}{2})) + \rho_{11}(1 + T(-\frac{3}{2}\cos^2\theta + \frac{1}{2}))$
$W_{\frac{5}{2}} = \frac{3}{32} \left[\rho_{55} 5 \left(\left(-\cos^4 \theta - 2\cos^2 \theta + 3 \right) + T(-5\cos^4 \theta + 6\cos^2 \theta - 1 \right) \right]$
+ $\rho_{33}((15\cos^4\theta - 10\cos^2\theta + 11) + T(75\cos^4\theta - 66\cos^2\theta + 7))$
$+ \rho_{11}2((-5\cos^4\theta + 10\cos^2\theta + 3) + T(-25\cos^4\theta + 18\cos^2\theta - 1)$


,where $T = \frac{|T(p,\frac{3}{2},0)|^2 - |T(p,\frac{1}{2},0)|^2}{|T(p,\frac{3}{2},0)|^2 + |T(p,\frac{1}{2},0)|^2}$ and $T(p,\lambda_1,\lambda_2)$ is the matrix element of two body decay with helicity of daughter particles to be λ_1 and λ_2 .

J^P	Partial wave	$W(heta_c)$
1/2+	Р	$1 + 3\cos^2\theta_c$
$1/2^{-}$	D	$1 + 3\cos^2\theta_c$
$3/2^{+}$	P	$1+6\sin^2\theta_c$
3/2-	S	1
$5/2^{+}$	P	$1 + (1/3)\cos^2\theta_c$
$5/2^{-}$	D	$1 + (15/4)\sin^2\theta_c$

$J^p \text{ of } \Xi_c(2970)^+$

$$J = \frac{1}{2}$$
 $---J = \frac{3}{2}$ $J = \frac{5}{2}$

$$J^p = \frac{1^{\pm}}{2} - - J^p = \frac{3}{2} \quad \dots \quad J = \frac{5}{2}$$

$$R = \frac{\Gamma(\Xi_{c}(2970)^{+} \to \Xi_{c}(2656)^{0}\pi^{+})}{\Gamma(\Xi_{c}(2970) \to \Xi_{c}^{\prime 0}\pi^{+})} = 1.67 \pm 0.29(stat.)^{+0.15}_{-0.09}(syst.) \pm 0.25$$

$$R = \begin{cases} 1.06 \text{ for } J^p = \frac{1}{2}^+ \text{ with light-quark degrees of freedom } s_l = 0 \\ 0.26 \text{ for } J^p = \frac{1}{2}^+ \text{ with light-quark degrees of freedom } s_l = 1 \\ <<1 \text{ for } J^p = \frac{1}{2}^- \text{ since } \Xi_c^{\prime 0} \pi^+ \text{ is in S wave while that to } \Xi_c(2656)^0 \pi^+ \text{ in D wave}_{31} \end{cases}$$