Studies of excited heavy flavor states at CMS

CMS MOSCOWINSTITUTE OF PHYSICS AND TECHNOLOGY

Petrov Nikita (on behalf of the CMS Collaboration) MIPT, Moscow,

nikita.petrov@cern.ch

EPS-HEP2021:European Physical Society Conference on High Energy Physics, Virtual World, 27.06.2021

Outline

Two recent studies of excited flavor states at CMS Collaboration are reported:

- Measurement of $B_c^+(2S)$ and $B_c^{+*}(2S)$ cross setion ratios in proton-proton collisions at $\sqrt{s} = 13$ TeV
- Observation of a new excited beauty strange baryon decaying to $\Xi_b^- \pi^+ \pi^-$

CMS experiment

Heavy flavor excited states studies are possible at CMS due to:

- Excellent muon system with large rapidity coverage and high-purity muon-ID
- Good resolution in $p_T \sim 1\%$ for central region of tracker
- Remarkable vertex reconstruction and impact parameter resolution down to $\approx 15 \mu m$
- Efficient and very flexible set of dimuon triggers

Measurement of $B_c^+(2S)$ and $B_c^{+*}(2S)$ cross setion ratios in proton-proton collisions at $\sqrt{s} = 13$ TeV [PRD 102 (2020) 092007]

Search for excited B⁺_c states

CMS pouge uowy tacking

5

Then the LHCb Collaboration using 8 TeV data didn't find any significant signal in the same region

Theoretical predictions and motivation

- Spectrum of B_c family is predicted to be very populated, but spectroscopic observations are poor so far
- The measurement of $B_c(2S)$ masses and production cross sections will help to deeply understand the dynamics of heavy-heavy quark systems.

The study is based on searching for $B_c^+(2S)$ and $B_c^{+*}(2S)$ in the $B_c^+\pi^+\pi^-$ final state.

Decay modes are:

- $B_c^+(2S) \rightarrow B_c^+\pi^+\pi^-$
- $B_c^{+*}(2S) \rightarrow B_c^{+*}\pi^+\pi^-$, where $B_c^{+*} \rightarrow B_c^+\gamma$, and soft photon is lost

The theory predicts $\Delta M = [M(B_c^*) - M(B_c)] - [M(B_c^*(2S)) - M(B_c(2S))] = 20 \text{ MeV}$ PRD 70 (2004) 054017 PRL 122 (2019) 132001

Observation of $B_c^{+(*)}(2S)$ states Using full Run II statistics the CMS Collaboration observed two well separated $B_c^+(2S)$ and $B_c^{+*}(2S)$ states

- $M(B_c^+(2S)) = 6871.0 \pm 1.2(\text{stat.}) \pm 0.8(\text{syst.}) \pm 0.8(B_c^+) \text{ MeV}$
- $\Delta M = 29.1 \pm 1.5$ (stat.) ± 0.7 (syst.) MeV

Confirmation of $B_c^{+(*)}(2S)$ states by the LHCb Collaboration

In 2019 the LHCb collaboration has confirmed the two-peaks structure using Run I and Run II statistics.

Results of the LHCb Collaboration are in a good agreement with the CMS Collaboration 8

Measurement of B_c^+ (2S) and B_c^{+*} (2S) cross section ratios

The ratios of the $B_c^{+(*)}$ (2S) to B_c^+ and B_c^{+*} (2S) to B_c^+ (2S) cross sections were measured in kinematic region $p_T(B_c^+) > 15$ GeV and $|y(B_c^+)| < 2.4$

$$\begin{split} \mathcal{R}^{+} &\equiv \frac{\sigma(\mathbf{B}_{\rm c}(2{\rm S})^{+})}{\sigma(\mathbf{B}_{\rm c}^{+})} \mathcal{B}(\mathbf{B}_{\rm c}(2{\rm S})^{+} \to \mathbf{B}_{\rm c}^{+}\pi^{+}\pi^{-}) = \frac{N(\mathbf{B}_{\rm c}(2{\rm S})^{+})}{N(\mathbf{B}_{\rm c}^{+})} \frac{\epsilon(\mathbf{B}_{\rm c}^{+})}{\epsilon(\mathbf{B}_{\rm c}(2{\rm S})^{+})'} \\ \mathcal{R}^{*+} &\equiv \frac{\sigma(\mathbf{B}_{\rm c}^{*}(2{\rm S})^{+})}{\sigma(\mathbf{B}_{\rm c}^{+})} \mathcal{B}(\mathbf{B}_{\rm c}^{*}(2{\rm S})^{+} \to \mathbf{B}_{\rm c}^{*+}\pi^{+}\pi^{-}) = \frac{N(\mathbf{B}_{\rm c}^{*}(2{\rm S})^{+})}{N(\mathbf{B}_{\rm c}^{+})} \frac{\epsilon(\mathbf{B}_{\rm c}^{+})}{\epsilon(\mathbf{B}_{\rm c}^{*}(2{\rm S})^{+})'} \\ \mathcal{R}^{*+} / \mathcal{R}^{+} &= \frac{\sigma(\mathbf{B}_{\rm c}^{*}(2{\rm S})^{+})}{\sigma(\mathbf{B}_{\rm c}(2{\rm S})^{+})} \frac{\mathcal{B}(\mathbf{B}_{\rm c}^{*}(2{\rm S})^{+} \to \mathbf{B}_{\rm c}^{*+}\pi^{+}\pi^{-})}{\mathcal{B}(\mathbf{B}_{\rm c}^{*}(2{\rm S})^{+} \to \mathbf{B}_{\rm c}^{*+}\pi^{+}\pi^{-})} = \frac{N(\mathbf{B}_{\rm c}^{*}(2{\rm S})^{+})}{N(\mathbf{B}_{\rm c}(2{\rm S})^{+})} \frac{\epsilon(\mathbf{B}_{\rm c}(2{\rm S})^{+})}{\epsilon(\mathbf{B}_{\rm c}^{*}(2{\rm S})^{+})}. \end{split}$$

$$\begin{split} R^+ &= (3.47 \pm 0.63 \, (\text{stat}) \pm 0.33 \, (\text{syst}))\%, \\ R^{*+} &= (4.69 \pm 0.71 \, (\text{stat}) \pm 0.56 \, (\text{syst}))\%, \\ R^{*+}/R^+ &= 1.35 \pm 0.32 \, (\text{stat}) \pm 0.09 \, (\text{syst}). \end{split}$$

<u>Systematic sources</u>: $B_c^+\pi^-$, J/ $\psi\pi^+$ fit models, pion tracking, decay kinematics

Measurement of B_c^+ (2S) and B_c^{+*} (2S) cross section ratios

10

 $M(\pi^+\pi^-)$ (MeV)

Observation of a new excited beauty strange baryon decaying to $\Xi_{b}^{-}\pi^{+}\pi^{-}$ [PRL 126 (2021) 252003]

q denotes *u* or *d* quarks for Ξ_b^0 or Ξ_b^- . L = I is the orbital excitation between the light diquark *qs* and heavy *b* quark

Theoretical predictions for $\Xi_{\rm b}^{**-}$

Various theoretical models and calculations predict a spectrum of excited Ξ_b baryons. There are several predictions for orbitally excited P-wave Ξ_b^{**} states with quantum numbers $J^P = 1/2^- (3/2^-)$, expected to decay to $\Xi_b'(\Xi_b^*)\pi$.

Previous experimental observations

Previous experimental observations

Recently the LHCb Collaboration reported observation of a new excited $\Xi_b(6227)^-$ baryon decaying to both $\Lambda_b^0 K^-$ and $\Xi_b^0 \pi^-$ and its isospin partner $\Xi_b(6227)^0$ decaying to $\Xi_b^- \pi^+$ final state

PRL 121 (2018) 072002

PRD 103 (2021) 0120024

However $\Xi_b(6227)$ isodoublet does not unambiguously fit quark model predictions and analogies from charm sector, therefore its quantum numbers need further investigations

$\Xi_{\rm b}$ signals

Since CMS has no hadron ID and dedicated trigger we cannot use $\Xi_b^- \to \Xi_c^0 \pi^-$ channel, therefore we reconstruct Ξ_b^- ground states in J/ $\psi\Xi^-$ and J/ $\psi\Lambda K^-$ final states

PRL 126 (2021) 252003

Background: exponential function

Reflection $\Xi_{b}^{-} \rightarrow J/\psi\Sigma^{0}K^{-}$ ($\Sigma^{0} \rightarrow \Lambda\gamma$, photon is not reconstructed) is also used for Ξ_{b}^{**-} reconstruction due to usage of mass difference variable $\Delta M = M(\Xi_{b}^{-}\pi^{+}\pi^{-}) - M(\Xi_{b}^{-}) - 2m_{\pi^{\pm}}^{PDG}$

Ξ_{b}^{**-} signals

Using full RunII statistics the CMS Collaboration observed a clear signal of $\Xi_b(6100)^-$ in the $\Xi_b^-\pi^+\pi^-$ invariant mass spectrum near the threshold for all Ξ_b^- decay modes including partially reconstructed one

Simultaneous fit with common mass and natural width values

- Signal: Relativistic Breit-Wigner convolved with resolution from MC
- Background: threshold function $(x x_0)^{\alpha}$

 $\Delta M = 24.14 \pm 0.22 \text{ (stat.)} \pm 0.09 \text{ (syst.) MeV}$ M[$\Xi_b(6100)^-$] = 6100.3 \pm 0.2 (stat.) \pm 0.1 (syst.) \pm 0.6 (M(Ξ_b^-)) MeV $\Gamma[\Xi_b(6100)^-] < 1.9 \text{ MeV} @ 95\% \text{ CL}$

18

Summary

- $B_c^+(2S)$ and $B_c^{+*}(2S)$ cross setion ratios are measured
 - ✓ R^+ , R^{*+} and R^{*+}/R^+ ratios do not demonstrate significant dependences on p_T and y of B_c^+ mesons
 - ✓ The normalized dipion invariant mass distributions for the $B_c^{+(*)}(2S) \rightarrow B_c^+\pi^+\pi^-$ are reported
- New beauty strange $\Xi_b(6100)^-$ baryon is observed in the $\Xi_b^-\pi^+\pi^-$ final state for first time
 - ✓ Consistent with being the lightest orbitally excited Ξ_b^- baryon with $J^P = 3/2^-$ and orbital momentum L = 1 between *b* quark and light diquark *ds*

Thank you for attention!

Backup slides

Charm sector analogy $\Xi_c(2815) \rightarrow \Xi_c(2645)\pi \rightarrow \Xi_c\pi\pi$ PRD 94 (2016) 052011

- There are peaks in both $\Xi_c \pi$ and $\Xi_c \pi \pi$ masses Mass window on $\Xi_c \pi$ is used for $\Xi_c \pi \pi$ studies This analogy is a strong motivation to perform a search for a peak in $\Xi_b^- \pi^+ \pi^-$ mass with a window on $\Xi_b^- \pi^+$ (corresponding to a with a window on $\Xi_{\rm h}^-\pi^+$ (corresponding to a previously observed Ξ_{h}^{*0})

