

A TES Detector for ALPS II

EPS-HEP, July 2021

Rikhav Shah, for the ALPS Collaboration

HE

Origins: Axions

- QCD interaction includes CP-violating term
- "Strong CP" problem mitigated by a Peccei-Quinn

symmetry

R. D. Peccei, H. R. Quinn, "CP Conservation in the Presence of Pseudoparticles", Phys. Rev. Lett. **38**, 1440

Leads to new pseudo Nambu-Goldstone boson (very low mass and very low interaction): axion
S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223.

Well motivated WISP candidate!

M. Dine, W. Fischler, M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett. B 104 (1981) 199.

- Couples to gauge bosons, importantly: $\mathscr{L}_{a\gamma\gamma} = -\frac{1}{4}g_{a\gamma\gamma}aF_{\mu\nu}\tilde{F}^{\mu\nu} = g_{a\gamma\gamma}a\vec{E}\cdot\vec{B}$
- Interaction used in most experiments

https://www.symmetrymagazine.org/article/the-other-dark-matter-candidate

Origins: Alps

- Breaking of other such global symmetries
- Many pseudo Nambu-Goldstone bosons arise: axion-like particles (alps)
- Lighter cousins to axions, similar interaction
- Contributors to cold dark matter A. Chatzistavrakidis, E. Erfani, H. P. Nilles, I. Zavala, Axiology, JCAP 1209 (2012) 006 [arXiv:1207.1128 [hep-ph]].
- Hints for such WISPs from:
 - Transparency of the universe to TeV photons D. Horns, M. Meyer, Indications for a Pair-Production Anomaly from the Propagation of VHE Gamma-Rays, JCAP 1202 (2012) 033 [arXiv:1201.4711 [astroph.CO]]
 - Anomalous cooling of Horizontal Branch (HB) stars A. Friedland, M. Giannotti, M. Wise, "Constraining the Axion-Photon Coupling with Massive Stars," arXiv:1210.1271 [hep-ph]

https://www.symmetrymagazine.org/article/december-2013/four-things-you-might-notknow-about-dark-matter

Origins: Alps

- Breaking of other such global symmetries
- Many pseudo Nambu-Goldstone bosons arise: axion-like particles (alps)
- Lighter cousins to axions, similar interaction
- Contributors to cold dark matter A. Chatzistavrakidis, E. Erfani, H. P. Nilles, I. Zavala, Axiology, JCAP 1209 (2012) 006 [arXiv:1207.1128 [hep-ph]].
- Hints for such WISPs from:
 - Transparency of the universe to TeV photons D. Horns, M. Meyer, Indications for a Pair-Production Anomaly from the Propagation of VHE Gamma-Rays, JCAP 1202 (2012) 033 [arXiv:1201.4711 [astroph.CO]]
 - Anomalous cooling of Horizontal Branch (HB) stars A. Friedland, M. Giannotti, M. Wise, "Constraining the Axion-Photon Coupling with Massive Stars," arXiv:1210.1271 [hep-ph]
- Using modified axion-photon coupling via Primakofflike Sikivie effect

P. Sikivie, Experimental Tests of the Invisible Axion, Phys. Rev. Lett. 51 (1983) 1415 [Erratum-ibid. 52 (1984) 695].

https://www.symmetrymagazine.org/article/december-2013/four-things-you-might-notknow-about-dark-matter

• Any Light Particle Search II: LSW Experiment, successor to ALPS I

Schematic of the ALPS II experiment

$$P_{\gamma \to a} \sim \mathscr{F}_{PC} \left(g_{a\gamma\gamma} B l \right)^2$$

$$P_{\gamma \to a} \sim \mathscr{F}_{PC} \left(g_{a\gamma\gamma} B l \right)^2$$

$$P_{\gamma \to a \to \gamma} \sim \mathscr{F}_{PC} \left(g_{a\gamma\gamma} B l \right)^2$$

$$P_{\gamma \to a \to \gamma} \sim \mathcal{F}_{PC} \left(g_{a\gamma\gamma} B l \right)^2 \cdot \mathcal{F}_{RC} \left(g_{a\gamma\gamma} B l \right)^2$$

• Photon-to-alp conversion and reconversion in cavities

Further details in "Towards new particle discoveries: ALPS II experiment shines soon"

by Ayman Hallal, 29 July 2021, 11:10,

Parallel Session T03: Dark Matter

ALPS II in DESY & UHH Labs tour

29 July 2021, 18:15

Schematic adapted from Katharina-Sophie Isleif

• Photon-to-alp conversion and reconversion in cavities

$$P_{\gamma \to a \to \gamma} = \frac{1}{16} \mathcal{F}_{PC} \mathcal{F}_{RC} \left(g_{a\gamma\gamma} Bl \right)^4 = 6 \cdot 10^{-38} \mathcal{F}_{PC} \mathcal{F}_{RC} \left(\frac{g_{a\gamma\gamma}}{10^{-10} \ GeV^{-1}} \frac{B}{1 \ T} \frac{l}{10 \ m} \right)$$

Schematic adapted from Katharina-Sophie Isleif

$$P_{\gamma \to a \to \gamma} = \frac{1}{16} \mathcal{F}_{PC} \mathcal{F}_{RC} \left(g_{a\gamma\gamma} Bl \right)^4 = 6 \cdot 10^{-38} \mathcal{F}_{PC} \mathcal{F}_{RC} \left(\frac{g_{a\gamma\gamma}}{10^{-10} \ GeV^{-1}} \frac{B}{1 \ T} \frac{l}{10 \ m} \right)$$

Results in regenerated photon rate ~ $2\cdot 10^{-5}$ /s i.e. ~ 2 photons per day!

.....pre-detection

Detector Needs

Very low 1064 nm photon regeneration rate: ~ 2 photons a day

Takes a lot to see light at the end of the tunnel

¹Dark rate $\leq 7.7 \cdot 10^{-6}$ Hz for TES to be viable, value from Transition Edge Sensor, ALPS II - Design requirement document, Document number v3, Jan Hendrik Põld and Hartmut Grote

Detector Needs

Very low 1064 nm photon regeneration rate: ~ 2 photons a day

¹Lita, Adriana E., Aaron J. Miller, and Sae Woo Nam. "Counting near-infrared single-photons with 95% efficiency." *Optics express* 16.5 (2008): 3032-3040.

TES

- Transition Edge Sensor: Superconducting microcalorimeter operated at its critical temperature ~ 140 mK, exploiting resistance dependence
- Tungsten micro-wafer: $25\mu m \times 25\mu m \times 20nm$ designed for 1064 nm photon detection
- Anti-reflective coatings, etc. maximise photon incidence
- Manufactured by NIST¹, USA
- Read out by sensitive magnetometers on module, integrated on module by PTB²

TESs integrated on module

¹National Institute of Standards and Technology ²Physikalisch-Technische Bundesanstalt, Germany **DESY.** JGU A TES for ALPS II, Rikhav Shah

Detector Setup

Setup housed in BlueFors dilution refrigerator: (³He/⁴He) mixture

Operated at 25 mK

Fiber input to TES from feedthrough

SQUID signal readout/ output via cryocable to electronics

TES Module on Cu cold finger, in Al can housing

Detector Setup

- Fiber coupled TES, 1064 nm cw laser input
- Chosen working point, e.g. $30\% R_N$
- Able to detect 1064 nm photons!
- Comparison to TES response
- Modification for fitting

Fitting allows freedom/restrictions on parameter values for constant c, amplitude a, trigger time t_0 , time constants τ_1, τ_2 .

Build other fit parameters like Pulse Integral (deposited energy)

- Fiber coupled TES, 1064 nm cw laser input
- Chosen working point, e.g. $30\% R_N$
- Able to detect 1064 nm photons!
- Comparison to TES response
- Modification for fitting

- Fiber coupled TES, 1064 nm cw laser input
- Chosen working point, e.g. $30\% R_N$
- Able to detect 1064 nm photons!
- Comparison to TES response
- Modification for fitting

- Fiber coupled TES, 1064 nm cw laser input
- Chosen working point, e.g. $30 \% R_N$
- Able to detect 1064 nm photons!
- Comparison to TES response
- Modification for fitting

All backgrounds

Schematic from Du, Peizhi, et al. "Sources of low-energy events in low-threshold dark matter detectors." arXiv preprint arXiv:2011.13939 (2020).

¹Dark rate $\leq 7.7 \cdot 10^{-6}$ Hz for photon detection at 5 σ with 50% DE, value from Transition Edge Sensor, ALPS II - Design requirement document, Document number v3, Jan Hendrik Põld and Hartmut Grote

Intrinsics

Populations without the optical fiber attached to the TES

20 day long DAQ to check viability!

Intrinsics

Intrinsics

Populations **without** the optical fiber attached to the TES

20 day long DAQ to check viability

Intrinsics

Pulse selection/background rejection using fit parameters like pulse integral, time constants, etc.

Comparison to 1064 nm "light" data

Intrinsics

Pulse selection/background rejection using fit parameters like pulse integral, time constants, etc.

Comparison to 1064 nm "light" data leads to a **selection region**

Intrinsics

Apply cuts to fit parameters on 20 day dataset

Intrinsics

Apply cuts to fit parameters on 20 day dataset

Map out surviving events for choice of cut(s)

Intrinsics

Achieve dark rate $6.9^{+5.18}_{-2.93} \cdot 10^{-6}$ Hz (95% CL)

TES viable for use in ALPS II!

Summary and Outlook

- Stable and robust detector and readout system
- Successful, reproducible operation and DAQ of the TES
- Very good understanding of the TES response
- Successful single photon detection at 1.16 eV (1064 nm) with 8% energy resolution
- Reliable and uniform pulse analysis pipeline with independent approaches
- Long term 20 day DAQ for (intrinsic) background events
- Effective pulse selection to obtain **dark rate < 7** µHz
- TES viable for use in ALPS II

Summary and Outlook

- Stable and robust detector and readout system
- Successful, reproducible operation and DAQ of the TES
- Very good understanding of the TES response
- Successful single photon detection at 1.16 eV (1064 nm) with 8% energy resolution
- Reliable and uniform pulse analysis pipeline with independent approaches
- Long term 20 day DAQ for (intrinsic) background events
- Effective pulse selection to obtain dark rate < 7 μHz
- TES viable for use in ALPS II
- Work on future measurements for TES: efficiency, background suppression, etc.
- Designing TES implementation in ALPS II and dedicated TES Lab
- Simulations of TES pulses and backgrounds also underway
- Completing background characterisation
- Moving and re-characterising system at ALPS II for DAQ in 2022

Thank you!

TES: Photon Incidence

- Heat the TES to transition region
- Requires biasing, realised with constant voltage across the TES
- Working point(s) within transition region
- Chosen in fractions of normal "Ohmic" resistance R_N
- Ensure high dynamic range and energy resolution
- Photon incidence heats TES by $\,\sim\,300\mu{\rm K}$ and resistance by 7Ω

TES Response

• TES in electrothermal circuit

With certain assumptions, the TES signal for photon absorption will rise and decay with time constants τ_+, τ_-

TES Response

• TES in electrothermal circuit

With certain assumptions, the TES signal for photon absorption will rise and decay with time constants τ_+, τ_-

$$\tau_{+} = \frac{L}{R_L + R_0(1+\beta)} = 2.28 \pm 0.01 \text{ ns}$$

$$\tau_{-} = \frac{C/G}{1 + \alpha/n} = 11.33 \pm 2.5 \,\mu \text{s}$$

$$\Delta E_{RMS} \approx \sqrt{\frac{4k_B T_0^2 C}{\alpha}} \approx 2\%$$

Adapted from Irwin, Kent D., and Gene C. Hilton. "Transitionedge sensors." *Cryogenic particle detection* (2005): 63-150.

- Improving energy resolution, de-noising data
- Using Principal Component Analysis (PCA): Reduce dataset dimensionality, each "component" is orthogonal to each other Essentially, each datapoint $d = \sum w_i \cdot PC_i$
- Succeeding components capture much lower, 'noisy' information
- Achieve Energy resolution $\approx 8~\%$
- Recreate and clean light pulses, but no pulse selection with backgrounds

How to: PCs calculation

- For a dataset, we can calculate W = eigenvectors $(V^T V)$, where $V^T V$ is the covariance matrix for V
- The matrix *W* (of the principal components) is the matrix corresponding to each trigger in the original dataset *V*.
- If N is number of chosen principal components for the analysis:

 $V = (\text{trigger 1}|\text{trigger 2}|\text{trigger 3}|\dots|\text{trigger T})_{M \times T}$

 $\implies W = (\text{Column of N PCs for trigger } 1|\dots|\text{Column of N PCs for trigger } T|)_{N \times T}$

• To express the dataset V in terms of W, we use $V = S \cdot W$, and calculate the coefficient matrix S using $S = V \cdot W^{T}$:

$\left(s_{11} \right)$	s_{12}	•••	s_{1N})	
$\backslash s_{M1}$		•••	s_{MN}	$M \times N$

• For the reduced dataset $V' = S \cdot W$, which has then the same dimensions as V, but each measured v_i has lesser noisy information

....we hope: most (useful) information is captured in the PCs used

.

How to: PCs calculation

- For a dataset, we can calculate W = eigenvectors $(V^T V)$, where $V^T V$ is the covariance matrix for V
- The matrix *W* (of the principal components) is the matrix corresponding to each trigger in the original dataset *V*.
- If N is number of chosen principal components for the analysis:

 $V = (\text{trigger } 1 | \text{trigger } 2 | \text{trigger } 3 | \dots | \text{trigger } T_{M \times T})$ fit parameters.

 $\implies W = (Column of N PCs for trigger 1|...|Column of N PCs for trigger T$ Each row is the array of PCs

• To express the dataset V in terms of W, we use $V = S \cdot W$, and calculate the coefficient matrix S using $S = V \cdot W^{T}$:

$\left(s_{11} \right)$	s_{12}	•••	s_{1N})	
$\backslash s_{M1}$		•••	s_{MN}	$M \times N$

• For the reduced dataset $V' = S \cdot W$, which has then the same dimensions as V, but each measured v_i has lesser noisy information

....we hope: most (useful) information is captured in the PCs used

Reduction in dimensions: Each trigger can be understood as a few PCs, like it was the few fit parameters.

Recreating Pulses Choice of PCs

Trigger number 135, Dataset: Intrinsics (7 Days)

Trigger number 135, Dataset: Intrinsics (7 Days)

