

First results of the newly installed, MAPS based, ALICE Inner Tracking System

Jian Liu (University of Liverpool) on behalf of the ALICE Collaboration

European Physical Society Conference on High Energy Physics 2021 26-30 July 2021, Online Event

Inner Tracking System Upgrade – ITS2

Entirely Monolithic Active Pixel Sensor (MAPS) based

- 7 cylinders covering ~ 10 m² area
 - Inner Barrel (IB): 3 Inner Layers (48 staves)
 - Outer Barrel (OB): 2 Middle Layers (54 staves) + 2 Outer Layers (90 staves)
- Fake-hit rate (FHR) requirement: < 10⁻⁶ /event/pixel
- Detection efficiency requirement: > 99%
- Fast removal/insertion of inner barrel for yearly maintenance

	ITS1	ITS2
Technology	Hybrid, drift, strip	MAPS
Layers	6	7
Spatial resolution	12 μm x 100 μm	5 μm x 5 μm
Radius	39 – 430 mm	22 mm – 400 mm
Pseudorapidity	-1 ≤ η ≤ 1	$-1.4 \leq \eta \leq 1.4$
Material budget	~ 1.14% X ₀	~ 0.3% X ₀ (inner barrel), ~ 1% X ₀ (outer barrel)
Readout capability	1 kHz	>100 kHz (Pb-Pb), >1 MHz (pp)

"Technical Design Report for the Upgrade of the ALICE Inner Tracking System" ALICE Collaboration, J.Phys. G41 (2014) 087002, CERN-LHCC-2013-024 2

Layer and Barrel Assembly

Outer Barrel assembly

Detector fully assembled in Dec. 2019

Inner Barrel assembly

EPS-2021 J. Liu

Installation

OB-Bottom being loaded to mini-frame

OB-Bottom being positioned

IB being installed

IB installed

OB installation completed – mid March 2021 IB installation completed – mid May 2021

Commissioning - Overall Status (1/2)

On-surface commissioning

- Commissioning shifts 24/7 started in July 2019
- 3 daily slots with 2 shifters + 1 shifter leader
- Completed in December 2020
- Verification of detector performance and long stability of parameters
- Detector status monitoring: voltage, current and temperature monitoring
- Standalone data taking: threshold scans, fakehit rate runs and readout tests
- Offline data quality control

	Half IB	Full IB	ОВ
Cosmics	~2000 runs ~7 days	~1600 runs ~6 days	~10 hours
Threshold scan	~2000 runs ~15.5 days	~1600 runs ~8.5 days	<i>O</i> (10 ²) runs <i>O</i> (10) days
Readout test	~2000 runs ~30 days	~2700 runs ~55 days	<i>O</i> (10 ²) runs

DCS: Detector Control System DAQ: Data Acquisition QC: Quality Control

DCS panel

QC panel (Fake-hit rate)

Commissioning - Overall Status (2/2)

In-situ commissioning

- Standalone (April June 2021)
 - Similar shift configuration as the onsurface commissioning
 - Central system integration
 - Detector status monitoring + expert tests
 - Detector validated after the installation in the cavern
- Global (July December 2021)
 - Shifts organized by ALICE + ITS on-call shifts
 - Central system integration/benchmarking
 - Validation/finalization of the online data processing/monitoring chain
 - Detector alignment + calibration
 - Technical + physics (cosmics + pilot beams, etc) runs

A cosmic track from the full IB

See Giulio Eulisse's talk: "O2/PDP: Preparation for data processing and analysis in LHC Run 3"

Commissioning – Fake-hit rate

no mask

100 masked

500 masked

1000 masked

2000 masked

5000 masked

10 000 masked

0.09‰ pixels masked

150

Running the IB at a fake-hit rate below 10⁻¹⁰/pixel/event

IBT (111 MPixel), VBB=0V

(runs 101877-101965)

Outer Barrel:

- Fake-hit rate runs using fixed settings
- Slight variations in the voltage applied to chips require 5-10 runs to detect all the hot pixels
- Masking the noisy pixels in each run, the average FHR reaches ~10⁻¹¹/event/pixel for all staves over 23688 chips (12.4G pixels)

EPS-2021 J. Liu

100

110

Set threshold [e]

120

130

140

90

Measurement performed on half IBs

Noisy pixels stay stable over time

Inner Barrel:

10-5

10-6-

10-7

10-8

10⁻⁹

(10-10

10-1

80

ake-hit [/pixel/event]

seems feasible

Goal: $< 10^{-6}$ /event/pixel

Extremely quiet detector!

Commissioning – Threshold

25

20

10

5

14

Threshold

- Chip-wide adjustment of front-end parameters to optimize the charge thresholds
- Achieving uniform response across the detector
- Very satisfying threshold stability over time

LZT after turning								
9.8	9.9	9.6	9.7	. 9.8	9.9	9.9	10.0	9.9
9.9	9.8 ·	9.7	10.0	9.8	9.8	10.0	10.0	9.8
10.0	9.8	9.8	9.8	9.9	10.1	9.9	10.0	9.9
9.7	9.7	9.7	9.7	9.8	10.0	9.8	9.8	9.9
9.8	9.8	9.9	9.8	9.7	10.0	9.9	9.7	9.9
9.9	9.7	9.8	9.6	10.0	9.7	10.0	10.0	9.9
9.8	9.9	. 10.0	9.8	9.9	10.0	9.9	9.8	9.8
9.7	9.7	9.8	9.9	9.8	9.6	10.2	9.8	9.7
9.9	9.8	9.8	10.0	9.9	9.9	9.9	10.0	9.7
9.7	9.8	9.8	9.8	9.7	9.9	9.9	9.7	9.9

Column [px] EPS-2021 J. Liu

1023

0

30

25

5

Commissioning – Reconstruction

Number

Goals: study track and cluster parameters, alignment

- Excellent training for readout chain, raw-data decoding, geometry, calibration and cluster finding
- Fully reconstructed in March 2021
- IB and OB misalignment $O(100 \mu m)$
- OB efficiency > 99.5% (see next slide)

Decision value: the vector product of the two vectors connecting the three clusters in the seed candidate

IB decision value

OB decision value

Commissioning – Efficiency

ALICE

Detection efficiency

Efficiency

Efficiency (%)

Efficiency (%)

 Cosmic tracks during the on-surface commissioning .

Efficiency >99.5% ($\pm 0.3\%$) \rightarrow requirement satisfied .

OB TOP

OB BOT

 $\delta\theta$ (degrees)

 $\delta\theta$ (degrees)

 $\delta\theta$ (degrees)

 $90 \,\delta\theta$ (degrees)

L3

L4

L5

L6

- Decision value < 0.1
- $\Delta \theta = 90^{\circ}, \, \delta \theta = 10^{\circ} \, (\text{~vertical tracks})$
- χ^2 < 1 for fit to clusters

- Cosmic track candidate extrapolated onto the fourth layer
- Straight line fit to the clusters
- Refit the track by taking into account the clusters which lie < 0.2 cm away from the track

- ITS2, an all-pixel version based on MAPS, fully installed in the ALICE experiment as part of the ALICE upgrade in May 2021
- Commissioning in the laboratory completed in December 2020, shows excellent performance
- *In-situ* commissioning started from mid April (standalone + global commissioning)
- ALICE cavern closure expected in February 2022 \rightarrow LHC Run 3
- A further upgrade of the ITS Inner Barrel (ITS3), based on TowerJazz CMOS 65 nm technology with bent wafer-scale stitched sensors, is approved for the LHC Long Shutdown 3 and R&D is on-going

Backup

ITS Upgrade Simulated Performance

Pointing resolution

- x3 and x6 improvement in r ϕ and z for 0.5 GeV/c π
- 40 μm for 0.5 GeV/c π

Standalone tracking efficiency

- > 60% for 0.1 GeV/c π
- > 95% for π with p_{τ} > 0.3 GeV/c

ALPIDE: ALICE PIxel DEtector

ALPIDE technology features:

- TowerJazz 180 nm CiS Process, full CMOS
- Deep P-well implementation available
- High resistivity epi-layer (>1 k Ω ·cm) p-type, thickness 25 μ m
- Smaller charge collection diode → lower capacitance → higher S/N
- Possibility of reverse biasing
- Substrate can be thinned down

Sensor specification:

- Pixel pitch 27 μ m x 29 μ m \rightarrow spatial resolution 5 μ m x 5 μ m
- Priority Encoder Readout
- Power: 40 mW/cm²
- Trigger rate: 100 kHz
- Integration time: < 10 μs
- Read out up to 1.2 Gbit/s
- Continuous or triggered read-out

ITS2 Barrels

- Hybrid Integrated Circuit (HIC): 9 sensors glued onto Al Flexible Printed Circuit (FPC)
- Wirebonds electrically connect FPC to chips
- Stave: a HIC glued onto cold plate and space frame
- Each sensor is read out individually

Outer Barrel (OB):

- OB HIC:
 - 7x2 sensors (2 rows) glued onto Cu FPC
 - Power delivered via 6 Al cross-cables soldered to the FPC
 - Data and control are transferred through 1 master chip per row
- OB stave:
 - 4x2 HICs (for ML) or 7x2 HICs (for OL) glued onto cold plate and space frame

Commissioning – Cluster

Cluster shape

- Hit position resolution depends on cluster shape
- Clusters become more elongated in the direction of track inclination
- Similar evolution of cluster shapes for both angles
- Slightly more pixels in the direction of ψ (pixels are shorter along columns)

