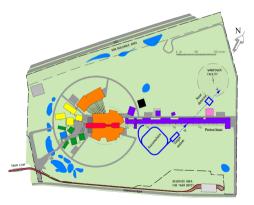

EPS-HEP 2021

Division for Nuclear Physics Lund University

2021.07.26



ESSnuSB

The ESS Neutrino Super-Beam

Objective

► Measure leptonic δ_{CP} at 2nd oscillation max.

Producing the neutrino beam

- - \triangleright 5 MW, 2.5 GeV E_{kin} , 14 Hz repetition
- \hookrightarrow Produce π^{\pm} with *p*-beam on four Ti-targets
 - ▶ Sign-select with magnetic focusing horn
- \hookrightarrow Produce ν -beam in 50 m decay tunnel
- Unoscillated beam at near detector (~ 250 m)
- → Oscillated beam at far detector (360 km or 540 km)

The Collaboration

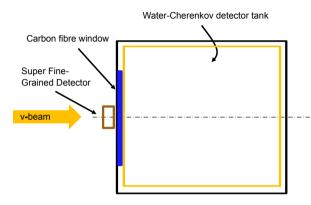
- ~ 50 active researchers
- > 10 countries

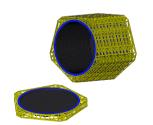
ESSnuSB Near Detector

Near Detector

 \triangleright 14 × 14 × 0.5 m³

SFGD


 $ightharpoonup \sim 10^6$ plastic scintillator cubes


 \triangleright 1 × 1 × 1 cm³

Similar to Hyper-K SuperFGD

WC

- - ▶ 4.7 m radius
 ▶ 3.5 inch PMTs

Two-fold objective:

- ▷ Measure v_u -flux: $\sim 10^7$ events per run-year (200 d, 2.16 × 10^{23} p.o.t.)
- ▶ Measure σ_{v_e} : v_e -fraction < 0.5 %
 - → requires selection scheme

EPS-HEP 2021 3 of 11 A. Burgman 2021.07.26

Electron-Neutrino Event Selection

- 1. Separating e^{\pm} from μ^{\pm}
- 2. Separating v_e from v_{μ}

- 1. Simulate charged lepton samples in detector tank with WCSim*
 - ▷ isotropic, homogeneous, uniform over E_{kin} < 1 GeV
- 2. Reconstruct using fiTQun*
- 3. Develop selection criteria to address charged-lepton identification

Sub-Cherenkov cut

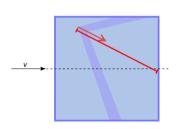
Reject muons below Cherenkov threshold posing as electrons

Vertex-reco. discrepancy cut

Reject events with a large difference in vertex pos. & dir. between e and μ reco.

Reco. quality cut

Reject low-brightness and closeto-wall events for reco. quality

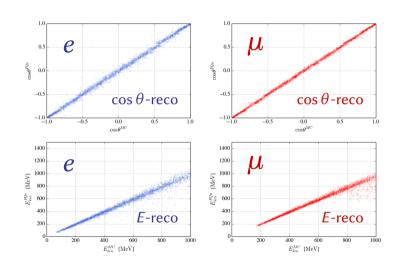

Cherenkov-ring resolution cut Reject events too close to tank wall in propagation direction

* Thank you to Hyper-Kamiokande members:

Cristovao Vilela. Erin O'Sullivan. Hirohisa Tanaka. Beniamin Ouilain. Michael Wilking

A. Burgman 2021.07.26 | EPS-HEP

Cherenkov-ring resolution cut Reject events too close to tank wall in propagation direction

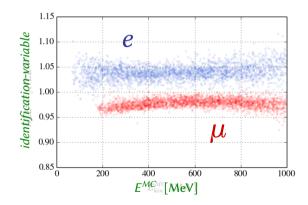


Selection acceptance

e 46.3%

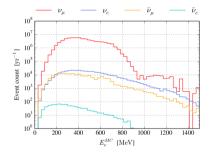
 μ 43.3 %

Selection acceptance


e 46.3 %

 μ 43.3 %

Reco. performance


e corr-ID 98.4% mis-ID 1.58%

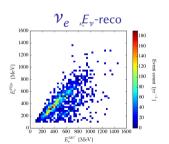
 μ corr-ID 99.7 % mis-ID 0.27 %

Separating v_e from v_μ

- 0. Simulate neutrino interaction vertices according to neutrino spectrum at ND with GENIE
- 1. Insert vertices into WCSim for detector response
- 2. Reconstruct using fiTQun
- 3. Apply charged-lepton criteria
- Develop additional selection criteria to address "real" vertex differences

Pion-like cut

Reject events identified as electrons, but more likely to be (neutral) pions


Multi-subevent cut

Reject events with multiple subevents

Event rate per 200 d running-year

Positive polarity (ν -select)

Negative polarity $(\bar{\nu}$ -select)

Tot. interactions	
Trigger	

1600

1400

1200

1000

800

600

400

200

$$3.57 \times 10^5$$

 5.61×10^4

Tot. interactions
$$6.88 \times 1$$

Trigger 3.48×1

 v_{μ} E_{ν} -reco

$$\begin{array}{cccc} \nu_{\mu} & \nu_{e} & \overline{\nu}_{\mu} \\ 6.88 \times 10^{5} & 4.74 \times 10^{3} & 1.39 \times 10^{7} \\ 3.48 \times 10^{5} & 6.45 \times 10^{2} & 6.84 \times 10^{6} \end{array}$$

140000

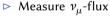
120000

100000

80000

60000

40000


20000

$$1.39 \times 10^7$$
 4. 6.84×10^6 5.

$$5.04 \times 10^3$$

 9.35×10^{1}

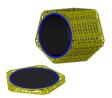
$$E_{\nu} = \frac{m_f^2 - m_b^2 - m_l^2 + 2m_b E_l}{2(m_b - E_l + p_l \cos \theta_l)}$$

A. Burgman **EPS-HEP 2021** 8 of 11 2021.07.26

200 400 600 800 1000 1200 1400 1600

 E^{MC}_{\cdots} [MeV]

Event rate per 200 d running-year


Positive polarity (ν-select)	Trigger Charged-lepton cuts Neutrino cuts $S(v_e + \overline{v}_e)/B(v_\mu + \overline{v}_\mu) =$	$\begin{vmatrix} e^{-\text{ID}} \ \nu_{\mu} \\ 1.09 \times 10^{7} \\ 5.72 \times 10^{5} \\ 1.50 \times 10^{4} \end{vmatrix}$ $= 0.73$	e -ID ν_e 5.26 × 10 ⁴ 2.29 × 10 ⁴ 1.10 × 10 ⁴	e -ID $\bar{\nu}_{\mu}$ 2.66 × 10 ⁴ 1.43 × 10 ³ 4.11 × 10 ¹	e -ID $\bar{\nu}_e$ 8.82 × 10 ¹ 3.58 × 10 ¹ 3.27 × 10 ¹
Negative polarity (₹-select)	Trigger Charged-lepton cuts Neutrino cuts $S(v_e + \bar{v}_e)/B(v_\mu + \bar{v}_\mu) =$	6.72×10^{3} 1.23×10^{2}	e -ID v_e 6.05×10^2 2.59×10^2 1.23×10^2	e -ID $\bar{\nu}_{\mu}$ 1.87×10^6 5.12×10^4 1.93×10^3	e -ID $\overline{\nu}_e$ 4.74×10^3 2.12×10^3 1.86×10^3

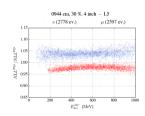
Near detector objective:

- ightharpoonup Measure $\sigma_{v_e N}$
 - \rightarrow Substantial increase in $\nu_e(\bar{\nu}_e)$ -contribution

ESSnuSB Near Detector

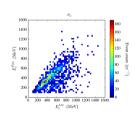
- Super Fine-Grained Detector ($\sim 1 \,\mathrm{m}^3$)
- Water-Cherenkov Detector ($\sim 1 \text{ kt}$)

Objectives


- Measure v_{μ} -flux
- Measure σ_{v_aN}

Measuring $\nu_e N$ cross-section

 \triangleright Requires ν_e selection scheme


Charged-lepton separation

▶ 4-fold selection

Neutrino separation

≥ 2-fold selection scheme

Pos. pol.
$$S(\nu_e + \bar{\nu}_e)/B(\nu_\mu + \bar{\nu}_\mu) = 0.73$$

Neg. pol. $S(\nu_e + \bar{\nu}_e)/B(\nu_\mu + \bar{\nu}_\mu) = 0.97$

Thank you

Backups

Backup 1.1 — Super Fine-Grained Detector

Similar to Hyper-K SuperFGD

 \triangleright 1.4 × 1.4 × 0.5 m³

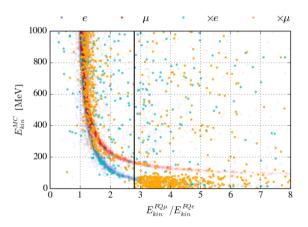
> ~ 10⁶ plastic scintillator cubes > 1 × 1 × 1 cm³

Mass 1030 kg

C₈H₈ 1014.55 kg

C₁₈H₁₄ 15.45 kg

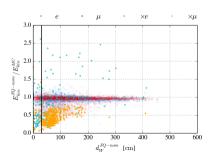
Positive horn polarity (selecting v)

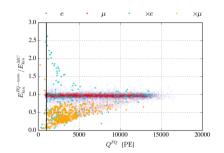

		Time	Molecule	V_{μ}	Ve	$\overset{-}{v_{\mu}}$	v _e
N C		200 days	C8H8	57 334.5	309.178	120.694	0.557
			C18H14	828.734	4.46	1.644	0.007
	C		Total	58 163.3	313.638	122.339	0.565
		200 days C1	C8H8	39 471	167.746	117.034	0.4649
	N		C18H14	560.937	2.383	1.768	0.0066
			Total	40 031.9	170.129	118.802	0.4715

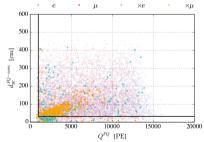
Negative horn polarity (selecting $\bar{\nu}$)

	C	, ,	/ \	J	,		
		Time	Molecule	ν_{μ}	Ve	$\bar{\overline{\nu}}_{\mu}$	$\overline{\mathbf{v}}_{\mathrm{e}}$
	C	200 days	C8H8	524.282	3.874	8 888.4	28.709
			C18H14	7.574	0.056	120.994	0.391
			Total	531.856	3.929	9 009.34	29.101
	N C		C8H8	391.182	2.432	8 336.22	22.447
		200 days	C18H14	5.553	0.034	117.87	0.317
			Total	396.736	2.467	8 454.09	22.764

Backup 2.1 — Separating e^{\pm} from μ^{\pm}

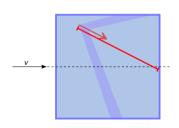

Sub-Cherenkov cut Reject muons below Cherenkov threshold posing as electrons

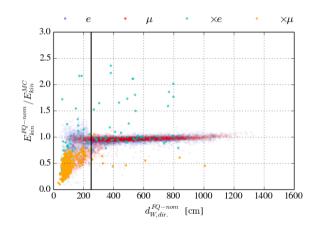



Backup 2.2 — Separating e^{\pm} from μ^{\pm}

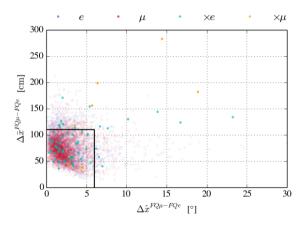
Reco. quality cut

Reject low-brightness and close-to-wall events for reco. quality

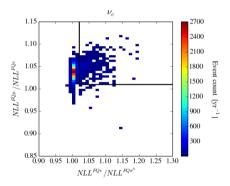


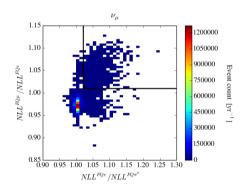


Backup 2.3 — Separating e^{\pm} from μ^{\pm}


Cherenkov-ring resolution cut Reject events too close to tank wall in propagation direction

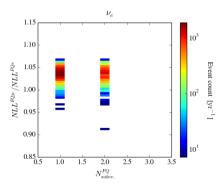
Backup 2.4 — Separating e^{\pm} from μ^{\pm}

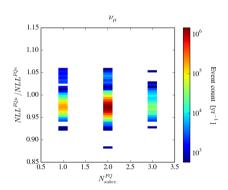

Vertex-reco. discrepancy cut Reject events with a large difference in vertex pos. & dir. between e and μ reco.



Backup 3.1 — Separating v_e from v_μ

Pion-like cut


Reject events identified as electrons, but more likely to be (neutral) pions



Backup 3.2 — Separating v_e from v_μ

Multi-subevent cut Reject events with multiple subevents

