

Performance of a 3D optical readout TPC for the CYGNO experiment

Andrea Messina - Sapienza Università di Roma & INFN Roma1 on behalf of:

The CYGNO Collaboration:

F. D. Amaro, E. Baracchini, L. Benussi, S. Bianco, C. Capoccia, M. Caponero, G. Cavoto, A. Cortez, R. J. de Cruz Roque, I. A. Costa, E. Dané, E. Di Marco, G. D'Imperio, G. Dho, F. Di Giambattista, R. R. M. Gregorio, F. Iacoangeli, H. P. Lima Júnior, G. Maccarrone, R. D. P. Mano, M. Marafini, G. Mazzitelli, A. G. Mc Lean, A. Messina, M. L. Migliorini, C.M.B. Monteiro, R. A. Nóbrega, A. Orlandi, I. F. Pains, E. Paoletti, L. Passamonti, F. Petrucci, S. Pelosi, S. Piacentini, D. Piccolo, D. Pierluigi, D. Pinci, A. Prajapati, F. Renga, F. Rosatelli, A. Russo, J.M.F. dos Santos, G. Saviano, A. da Silva Lopes Júnior, N. Spooner, R. Tesauro, S. Tomassini, S. Torelli

INFN

The $C \times G \times O$ project:

- **Aiming at** a large detector for high precision **3D** tracking of rare low energy nuclear recoils (keV) as for example WIMPs
- Experimental challenges: rate O(evt/kg/y), background rejection, and energy threshold (keV)
- **Strategy:** photograph nuclear recoil in a He:CF₄ (1 atm) TPC with a GEM amplification stage
 - 3D tracking: position, direction, and fiducialization
 - total released energy, dE/dx (head/tail)
 - optical sensors: high granularity, very low noise, and high sensitivity
 - optical coupling: sensors outside the sensitive volume, acquire large surfaces with small sensors

Refer to G. Cavoto's talk in DM section for further details on the physics reach

ncident particle

cathode

MPGD anode

C G NO timeline

CYGNO R&D

ORANGE **@ ROMA1**

- 10x10 cm² GEMs
- 1 cm drift
- 100 cm³ volume

LEMOn @ LNF

- 20x24 cm² GEMs
- 20 cm drift
- 0.01 m³ volume
- 3D printing

MANGO @ LNF / LNGS

- 10x10 cm² GEMs
- variable drift
- performance studies
- gas mixture tests

2015-2016

2017-2018

2019-2021

EPS-HEP 26-30 July 2021 - Andrea Messina Sapienza Università di Roma & INFN Roma1 on behalf of the CYGNO Collaboration

PHASE 0

LIME @ LNF / LNGS

- 30x30 cm² GEMs
- 50 cm drift
- 0.05 m³ volume
- performance and stability test
- underground
- shielding
- data-taking •

PHASE 1

PHASE 2

CYGNO demonstrator @ LNF / LNGS

- 9x2 back-to-back LIME modules
- 1 m³ volume
- material tests
- background assessment
- underground installation & commissioning
- gas purification
- scalability

2021

3

LEMOn prototype

- 24 x 24 cm² readout area
- 20 cm drift
- 1 sCMOS + 1 PMT

EPS-HEP 26-30 July 2021 - Andrea Messina Sapienza Università di Roma & INFN Roma1 on behalf of the CYGNO Collaboration

JINST 15 (2020) P10001

He:CF₄ spectrum

Response to 55Fe X-rays: energy resolution and threshold

JINST 15 (2020) P10001

2019 JINST 14 P07011

Energy resolution of 15% at 5.9 keV_{ee} with sCMOS and PMT

The diffusion can be exploited to estimate the z position of the event.

The width (S) and amplitude (A) of the transverse light profile and PMT waveform become larger and smaller respectively with increasing distance from the GEM (z position).

Thus
$$\eta = \frac{S}{A}$$
 increases

Electronegative gas generates negative ions that drift w/out diffusion with different velocity allowing high accuracy on z from Δt .

<u>JINST 13 (2018) 04, P04022</u>

Multiple DBSCAN iteration to select different ionisation patters

EPS-HEP 26-30 July 2021 - Andrea Messina Sapienza Università di Roma & INFN Roma1 on behalf of the CYGNO Collaboration

JINST 15 (2020) 12, T12003

Morphological geodesic active contours (GAC) to connect long tracks

Iterative morphological thinning for actual track length

Response to low energy nuclear recoils

EPS-HEP 26-30 July 2021 - Andrea Messina Sapienza Università di Roma & INFN Roma1 on behalf of the CYGNO Collaboration

LEMON

Measur.Sci.Tech. 32 (2021) 2, 025902

40% nuclear recoil efficiency at 6 keV_{ee} with 96% rejection against ⁵⁵Fe

Working on a more refined algorithm to exploit all available information

Electroluminescence studies

EPS-HEP 26-30 July 2021 - Andrea Messina Sapienza Università di Roma & INFN Roma1 on behalf of the CYGNO Collaboration

JINST 15 (2020) P08018

First demonstration of electroluminescence in CF₄

R&D: ternary mixture with hydrocarbons

Isobutane (i- C_4H_{10}): ? %

- Improves gas tracking properties;
- Maintains low target mass.

Going from **0 to 5% isobutane** content:

- 7.8 decrees in the EL photon per avalanche electron
- 2.7 increase in the maximum number of avalanche electrons
- however only 2.8 decrease in the total number of EL photon per absorbed keV
- energy resolution independent of isobutane content

First demonstration of a very good light yield from a mixture with C₄H₁₀

Lime prototype

ORCA[®]-Fusion

- reduced noise from 1.4 to 0.7 electrons
- more pixels (2304x2304)
- larger quantum efficiency 0.8 (0.7)

COPPER BOX

11

Large prototypes stability tests

He:CF4 60:40% 1 atm

LEMOn successfully operated for 25 consecutive days with automatic GEM hot spots recovery procedure

Hot spots and Discharges:

dumped by lowering GEMs voltage to 100 V and raising it again (3 min deadtime)

Similar stability with LIME: (less than 1 evt/hour) in agreement with a factor of 2 larger GEMs

JINST 15 (2020) P10001

Gas Electron Multipliers (GEMs) amplification

ron Microscopy of a GEM Foi

13

Trigger and DAQ for CYGNO

Two readout path:

- camera (one per module):
 - exposure 0.2-1 sec. 10MB of data;
 - run in continuum mode, 50 Mb/s
 - CameraLink PCIe frame grabber @ 2.5 GB/s (or USB3)

• photodetector (up to 8 channels per module):

12-bit digitisation @ 250 MS/s, $\leq 1\mu$ s, 1 Mb/s

Two possible trigger levels:

- **HW trigger:** photodetectors with minimal logic (e.g. majority)
- **Software trigger:** reconstruction of images and waveforms on a farm of CPUs/GPUs based and trigger on interesting features (e.g. clusters), typically 1 evt/s

MIDAS used for Readout, Trigger and slow control

Summary

The CYGNO project is developing a GEM-based TPC with optical readout

- Very good energy and position resolution
- High discrimination power
- R&D ongoing to optimise the already very good performance
- First underground campaign by the end of 2021

ORANGE @ ROMA1	LEMOn @ LNF	MANGO @ LNF / LNG
2015-2016	2017-2018	2019-2021
	<image/>	

EPS-HEP 26-30 July 2021 - Andrea Messina Sapienza Università di Roma & INFN Roma1 on behalf of the CYGNO Collaboration

Acknowledgements

This project has received fundings under the European Union's Horizon 2020 research and innovation programme from the Marie Sklodowska-Curie grant agreement No 657751 and from the European Research Council (ERC) grant agreement No 818744

CYGNO Project is funded by INFN.

Thank you!

F. D. Amaro, E. Baracchini, L. Benussi, S. Bianco, C. Capoccia, M. Caponero, G. Cavoto, A. Cortez, R. J. de Cruz Roque, I. A. Costa, E. Dané, E. Di Marco, G. D'Imperio, G. Dho, F. Di Giambattista, R. R. M. Gregorio, F. Iacoangeli, H. P. Lima Júnior, G. Maccarrone, R. D. P. Mano, M. Marafini, G. Mazzitelli, A. G. Mc Lean, A. Messina, M. L. Migliorini, C.M.B. Monteiro, R. A. Nóbrega, A. Orlandi, I. F. Pains, E. Paoletti, L. Passamonti, F. Petrucci, S. Pelosi, S. Piacentini, D. Piccolo, D. Pierluigi, D. Pinci, A. Prajapati, F. Renga, F. Rosatelli, A. Russo, J.M.F. dos Santos, G. Saviano, A. da Silva Lopes Júnior, N. Spooner, R. Tesauro, S. Tomassini, S. Torelli

The CXGNO collaboration:

UNIVERSIDADE FEDERAL DE JUIZ DE FORA

