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CHALLENGES FOR ALICE IN RuN 3

From < 1 kHz single events...

» Reconstruct 100x more events online.

» Store 100x more events (needs factor 36x for
TPC compression).

» Reconstruct TPC data in continuous readou
in combination with triggered detectors. pPb PbPb

» Completely new detector readout and

substantial detector upgrades: new ITS,
MFT, FIT. New GEM for TPC readout.

» WLCG "flat budget" scenario (4x more
resources over 10 years, for 100x more
events).

Tracks of different collisions shown in different colour
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A NEW CoMPUTING ARCHITECTURE FoRr ALICE IN Run 3: ALICE 02

ALICE can cope with the challenges of Run 3 only by a radical redesign of its
software and computing architecture.

» New architecture based on the experience accumulated in the ALICE HLT during Run 1/ Run 2.

» Focus on online data compression, only analysis objects readily available, trading
computational cost for storage.

> Simplified Data Model to improve 1/0 performance.
> Appropriately chosen algorithms tuned for vectorisation and GPU.
» Close collaboration with the physics community to organise analysis efforts.

» Close collaboration with GSI and FAIR on a common software stack.



ALICE IN RuN 3: POINT 2
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SYNCHRONOUS RECONSTRUCTION: GPUS AS FIRST CLASS CITIZENS

Synchronous processing requires GPU utilisation for TPC
tracking. One modern GPU replaces 40 CPU cores.
Changing the algorithm gives an additional 20x - 25x
speedup. GPUs provide a 4x total benefit in terms of
cost.

ALICE will use ~250 dual AMD Rome for a total
of 64 cores, each equipped with 8 AMD MI50 32
GB GPUs. 1500 GPUs needed to process @ 50 kHz,
30% margin.

Besides TPC tracking, baseline foresees running most of
ITS tracking on the GPU. 99% of the computing in
synchronous phase already running on the GPU.

Same source code can targeted to support different GPU
middlewares (AMD HIP, nVIDIA CUDA, OpenCL) or
CPU (mostly for debugging and validation).

Synchronous chain
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ASYNCHRONOUS RECONSTRUCTION

Follows the PbPb data taking, interleaved with pp. Two
processing cycles per data taking year.

Processing on EPN farm (2/3 CTF volume) and the
Grid (1/3).

Currently over 80% of the CPU - equivalent computing
time running on GPUs. GPU usage is crucial to
effectively use EPN farm when not taking data.

After 2nd cycle CTF will remain only on tape. Any
subsequent cycle will have to wait until LHC LS.

Single persistent analysis object output - Analysis
Object Data. All the analysis will have to be performed
on such data and the associated derived objects.

20 PB of EOS disk cache already benchmarked and
ready for commissioning.
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0Z DATA PROCESSING LAYER
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ANALYSIS MODEL IN RUN 3

Solid foundations: the idea of organised analysis (trains) will
stay. Improve on the implementation.

>

>

x100 more collisions compared to present setup, AOD only.

Initial analysis of 10% of the data at fewer Analysis Facilities,
highly performant in terms of data access.

Streamline data model, trade generality for speed, flatten data
structures.

Recompute quantities on the fly rather than storing them.
CPU cycles are cheap.

Produce highly targeted ntuples to reduce turnaround for
some key analysis.

Goal from TDR 1is to have each Analysis Facility go through

the equivalent of 5PB of AODs every 12 hours (~100 GB/s).
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ANALYSIS FRAMEWORK

We have completely rewritten our analysis
software to be able to run on top of the same =]
software stack, the O2 DPL, simplifying the data ==

model while doing so. —

b

IR

o
|

Each Analysis Task is now a DPL device, taking
advantage of its innate parallelism.

Cross indexed flat tables rather than hierarchy of
objects.

Objected Relation Mapping (ORM) API provided
to hide backing store and use track.pt().

A declarative API], to easily define filters, joins
and expression, providing efficient bulk
manipulations.
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http://track.pt

ANALYSIS FRAMEWORK

We have completely rewritten our analysis
software to be able to run on top of the same
software stack, the O2 DPL, simplifying the data
model while doing so.

Filter vertexFilter = nabs(collision::posZ) < 7;
Filter ptFilter = track::pt > 0.5f;

Each Analysis Task is now a DPL device, taking srocess(Collision & collision,

advantage of its innate parallelism. Tracks & tracks)

Cross indexed flat tables rather than hierarchy of
objects.

Objected Relation Mapping (ORM) API provided (auto& track : tracks)
to hide backing store and use track.pt(). hist.Fill(track.pt());

A declarative API, to easily define filters, joins
and expression, providing efficient bulk
manipulations.
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ANALYSIS TRAINS

» ALICE has a tradition of organised e B Alifyperioop 6=
anaIYSiS (trainS), WhiCh are SCthUled Quick Access: O2 Integration Test Analysis 02 Development Analysis 02 Development
together to run on the Grid, amortising My Analyses
per task access to storage cost. |

728 02 Integration Test Analysis

» It integrates Grid job submission with Amalyzore: aulisse crosaso.tuiken

bookkeeping and shields the users from o
) o Package: nightly-20210713-2 or ne
the mechanics of resubmitting and merge.

» Extremely popular among ALICE users Wagon LHC150. benchmark
(>90% of Run 1 / Run 2 analysis). Correlation 2

» Revamped web interface with better HistogramsFul
profiling abilities, the ability to SpeciraTPCPIKP
(de)compose trains to optimise SpectraTPCTiny X
throughput / resource utilisation. EREEIRREERN o clone wagon from other analysis
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TAKE AWAY POINTS

» x100 more data with only x4 more (Grid) resources in 10 years.
» New software & computing architecture to cope with it.
» GPUs are critical for ALICE ability to process data in Run 3.

» ALICE physics community is busy porting code to the new framework, with a mixed
imperative / declarative paradigm being used.

» ALICE "Trains" infrastructure is being upgraded to take advantage of the new
framework as well.
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WLCG pledged resources
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Computing time [ms]
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EOS Total 10

20 GB/s

40 GB/s

30 GB/s

- [ Y s e et &

10 GB/s

0 B/s / .

06/2100:00 06/2108:00 06/2116:00 06/2200:00 06/2208:00 06/2216:00 06/2300:00 06/2308:00 06/2316:00 06/2400:00 06/2408:00 06/2416:00 06/2500:00

bytes_read 11.2GB/s

== Dytes_written 20.1 GB/s



