

An Alternative Design for Large Scale Liquid Scintillator Detectors

Iwan Morton-Blake

University of Oxford

What have liquid scintillator detectors ever done for us?

Liquid scintillator detectors are getting larger and larger...

Daya Bay 8 x 20t

Borexino ~300t

SNO+ ~1000t

KamLAND ~1000t

JUNO ~20,000t

Liquid scintillator detectors are getting larger and larger

Daya Bay 8 x 20t Common to all:

A barrier separating the scintillator from The detector structure's radiation + PMTs

JUNO ~20,000t

Iwan Morton-Blake | University of Oxford

Scintillator

~300t

Borexino

Transparent barrier

Buffer

PMT

~1000t

e.g. JUNO: 20kt

Construction of the Acrylic Vessel

Stainless-steel Support Structure

Support Joints for the Acrylic Vessel

Acrylic Vessel Stress Distribution

Images taken from the JUNO Conceptual Design Report [1]

An Alternative Design?

<u>Stratified Llquid Plane Scintillator: SLIPs</u>

Use Immiscible Liquids:

Float the less-dense scintillator on top of the buffer liquid

<u>Stratified Llquid Plane Scintillator: SLIPS</u>

Use Immiscible Liquids: Float the less-dense scintillator on top of the buffer liquid

26/7/2021

Performance Testing Simulation in GEANT4

Photomultiplier Tubes

Chose 20" r12860 Hamamatsu PMTs for testing in simulations

Quantum Efficiency ~30% @ 400nm

Single photoelectron Peak/Valley ratio = 4.75

Plots taken from [2]

Transit Time Spread (FWHM) = 2.86ns

26/7/2021

Photomultiplier Tubes

Plots taken from [2]

~30% @ 400nm

26/7/2021

Top of PMTs 2m below liquid interface

Scintillator + Glycol Buffer

Tested using SNO+ cocktail:

LAB + 2g/L PPO + 15mg/L bisMSB

Scintillation Light Emission Spectra & PMT Collection Efficiency Scintillator + Glycol Refractive Index

26/7/2021

Scintillator + Glycol Buffer

Tested using SNO+ cocktail:

LAB + 2g/L PPO + 15mg/L bisMSB

Scintillation Light Emission Spectra & PMT Collection Efficiency Scintillator + Glycol Refractive Index

Light Yield

(Energy/Position Resolution)

Light Yield Total photoelectrons produced on PMTs by 1MeV electrons vs position ~1100 p.e./MeV 7 1400 5 Z [m] Х 1300 25m 1200 10m 1100 3m 1000 -3 900 800 10 15 20 5 25 0 Y [m]

Light Yield

	Borexino [3] [4]	KamLAND [5]	JUNO [6]	SLIPS
Target Mass	300t	1kt	20kt	20kt
Num. PMTs	~2200	~1900	~20,000	~8000
Light Yield (photoelectrons/MeV)	~450	~200	>1200	~1100

Position Reconstruction

XY - Position Reconstruction

Analytically Calculating Wavefront Times

Analytically Calculating Wavefront Times

Even Simpler Designs

"Cuboid"

<u>"Pancake"</u>

- + Simpler Construction
 - + Easier Narrow Cavern Excavation
 - Worse Position Reconstruction (more reflections in a narrow detector)

26/7/2021

Light Yield

Total photoelectrons produced on PMTs by 1MeV electrons around the detector

26/7/2021

Z [m]

Light Yield

Total photoelectrons produced on PMTs by 1MeV electrons around the detector

26/7/2021

Z [m]

26/7/2021

27

<u>SLIPS</u>

Simple Design: Cheap and easy to construct
High Light Yield with fewer PMTs
Good position resolution

• Faster Scintillator

- Faster Scintillator
- Light Collecting Concentrators

- Faster Scintillator
- Light Collecting Concentrators
- Double PMT Layer
 - (3 liq. System)

- Faster Scintillator
- Light Collecting Concentrators
- Double PMT Layer
 - (3 liq. System)

26/7/2021

Concave Reflective Lid

26/7/2021

- Faster Scintillator
- Light Collecting Concentrators
- Double PMT Layer
 - (3 liq. System)
- Concave Reflective Lid

(Paper coming soon)

<u>References</u>

[1] Adam, T., F. An, G. An, Q. An, N. Anfimov, V. Antonelli, G. Baccolo, et al. "JUNO Conceptual Design Report." arXiv.org, September 28, 2015.

[2] X.-C. Lei, Y.-K. Heng, S. Qian, J.-K. Xia, S.-L. Liu, Z. Wu, B.-J. Yan, M.-H.Xu, Z. Wang, X.-N. Li et al. Evaluation of new large area pmt with highquantum efficiency. Chinese Physics C, 40(2):026002, 2016

[3] Beau, Tristan J. "Status of the Borexino Experiment." arXiv.org, April 29, 2002.

[4] Smirnov, O. Yu., M. Agostini, S. Appel, G. Bellini, J. Benziger, D. Bick, G. Bonfini, et al. "Measurement of Neutrino Flux from the Primary Proton–Proton Fusion Process in the Sun with Borexino Detector." Physics of Particles and Nuclei 47, no. 6 (2016): 995–1002.

[5] J. A. Detwiler. Measurement of neutrino oscillation with KamLAND. 2005.

[6] He, Miao. "Double Calorimetry System in JUNO." arXiv.org, June 27, 2017.

26/7/2021

Backup

Efficient Light Collection

Side-on view of SLIPs

26/7/2021

Faster Scintillator & PMTs

20" PMTs \rightarrow Faster 8" PMTs (2.86 \rightarrow 2.05ns FWHM TTS)

7.2ns scintillator \rightarrow 3ns scintillator (4.9 \rightarrow 3ns scintillator (4.9 \rightarrow 3ns scintillation time)

Improved Wavefront Separation, Improved z-position resolution: $\sigma_z \sim 5 \text{cm}$

Light Reflecting Concentrators: Improving Light Yield

Side-on and top-down views of PMTs with concentrators glass (white), photocathode (green) and concentrator (red)

Simulations show a ~10% improvement in light collection (compared to densely packed PMTs without concentrators)

Working "Prototype" : Immiscible Liquids

Picture from inside the SNO+ detector during the scintillator fill phase

