Muon reconstruction performance and detector-design considerations for a Muon Collider

C. Aimè, N. Bartosik, M. Casarsa, C. Riccardi, P. Salvini, <u>Ilaria Vai</u>

on behalf of the Muon Collider Physics and Detectors working group*

28th July 2021 – EPS-HEP2021 Online Conference

Why a Muon Collider?

- Lepton collider = precision physics
- ✓ m_{μ} ~207 m_e = low level of synchrotron radiation
- \rightarrow possibility for a multi-TeV, high luminosity, lepton collider

Technological challenges:

- X Need to produce a large number of muons in small emittance bunches
- X Muons decay
 - Beam Induced Background (BIB) in detector ٠
 - Neutrino hazard •

https://muoncollider.web.cern.ch/

Ilaria Vai

Muon collider @ EPS-HEP2021

Talk:

• <u>Higgs boson couplings at muon collider</u>, L. Buonincontri

Posters:

- Design a calorimeter system for the Muon Collider experiment, L. Sestini
- <u>Tracking and track reconstruction at a muon collider in the presence of beam-induced</u> <u>background</u>, H. Weber
- Tracking with ACTS for a Muon Collider detector, K. Krizka
- <u>Using cluster shape for beam-background suppression in a future muon collider experiment</u>, E.
 D. Resseguie
- Dark-SUSY channels to study muon reconstruction performance at the Muon Collider, C. Aimè
- Prospects for the measurement of $\sigma_{H} \times BR(H \rightarrow \mu\mu)$ at a 3-TeV muon collider, A. Montella

Muon system at muon collider

<u>Iron yoke plates instrumented</u> with:

- 7 layers of detectors in the barrel
- 6 layers in the endcap

<u>Detector technology</u>: Glass RPC cells (30x30 mm²)

Magnetic field:

- 1.34 T in the barrel region
- 0.01 T in the endcap region

Based on CLIC detector: arXiv:1202.5940

ILCSoft: http://ilcsoft.desy.de/portal

Ilaria Vai

Muon reconstruction efficiency and resolution

Single muon efficiency ~100 % for muons with p_T in the range 100 MeV – 1 TeV and polar angle $8^\circ < \theta < 172^\circ$ (top plots).

In the right plot, Δp_T is the difference between the generated muon p_T and the p_T of the corresponding Pandora reconstructed track.

Single muon efficiency defined as the generated particles associated to a cluster divided by the total generated particles.

Ilaria Vai

Beam Induced Background - 1

BIB Energy distribution - Neutrons vs θ

Beam Induced Background (BIB) in the muon system is mainly composed by neutrons and photons. In the inner regions, the flux is almost 3 orders of magnitude higher than in the outer regions

BIB Energy distribution - Photons vs θ

 $At \sqrt{s} = 1.5 TeV:$

- <u>Neutrons</u>: energies up to 2.5 GeV
- <u>Photons</u>: energies up to 200 MeV

Beam Induced Background - 2

BIB hits in the muon system are concentrated around the beam axis in the endcaps in a region small with respect to the whole layer region of 500×500 cells.

A geometrical cut combined, for example, with a cut on the track transverse momentum allows to get rid of almost all BIB hits in the muon system.

Ilaria Vai

 \bigcirc

ON Collide

Which other detector can we consider for the muon system?

1. Double-gap Glass RPC

a) Currently implemented in the muon collider simulation

2. Double-gap HPL RPC

- a) Classical version of the detector
- 3. Triple-GEM
 - a) Micropattern gaseous detector with better space resolution w.r.t. RPC

4. PicoSec

a) New generation MPGD with improved time resolution

All the detectors were simulated in Geant4.10.06 p02 with a «basic» geometry; no electronics, cooling, shielding, etc.. were implemented.

Ilaria Vai

Detector sensitivity

Sensitivity

 $s = \frac{N}{M}$

- N = number of events in which at least one charged particle reaches a sensitive gap
- *M* = number of incident particles (counted with a fake layer of air on top of the detector)

IN

Comparison between technologies

Muon Collider 1.5 TeV - Photon Sensitivity

Sensitivity of MPGDs in general **lower than RPCs** (both for neutrons and photons) due to the lower material budget.

The yellow vertical line shows the energy limit of BIB @ 1.5 TeV

Muon Collider 1.5 TeV - Neutron Sensitivity

ON Collide

Hit rate estimation

Comparison between technologies

$$Total \ Hit \ Rate = \sum_{E} Hit \ Rate \ (E)$$

Muon Collider 1.5 TeV - Photon Hit Rate vs 0

As a consequence the expected hit rate with MPGDs is lower than the one from RPCs.

RPCs and GRPCs in the inner region are at the limit of the standard rate capability.

θ

The *Muon Collider* is a great opportunity for precision physics at high energy and high luminosity. However, its unique environment requires a careful design of the most suitable detectors.

In this context, a first study of *BIB hit rate* in the muon system of a Muon Collider experiment has been performed with a standalone Geant4 simulation.

GRPC – currently implemented in the muon collider simulation – have been compared to Triple GEM, classical RPC and PicoSec prototypes. Generally, MPGDs turn out to have lower sensitivities to BIB and then lower expected hit rate.

Additional studies will be implemented once the BIB simulation at higher \sqrt{s} will be available. In parallel, analyses focused on the determination of the requested time and space resolutions are ongoing.

Ilaria Vai

Backup

Ilaria Vai

Muon collider parameters

Parameter	Units	Higgs	Top-high resolution	Top-high luminosity		Multi-TeV	
CoM energy	${ m TeV}$	0.126	0.35	0.35	1.5	3.0	6.0*
Avg. luminosity	$10^{34}{ m cm}^{-2}s^{-1}$	0.008	0.07	0.6	1.25	4.4	12
Beam energy spread	%	0.004	0.01	0.1	0.1	0.1	0.1
Higgs production $/10^7$ sec		13,500	7000	60,000	37,500	200,000	820,000
Circumference	\mathbf{km}	0.3	0.7	0.7	2.5	4.5	6
Ring depth [1]	m	135	135	135	135	135	540
No. of IPs		1	1	1	2	2	2
Repetition rate	Hz	15	15	15	15	12	6
$\beta_{x,y}^*$	cm	1.7	1.5	0.5	1 (0.5-2)	0.5(0.3-3)	0.25
No. muons/bunch	10^{12}	4	4	3	2	2	2
Norm. trans. emittance, ε_T	$\pi\mathrm{mm} ext{-rad}$	0.2	0.2	0.05	0.025	0.025	0.025
Norm. long. emittance, ε_L	$\pi\mathrm{mm} ext{-rad}$	1.5	1.5	10	70	70	70
Bunch length, σ_s	cm	6.3	0.9	0.5	1	0.5	0.2
Proton driver power	MW	4	4	4	4	4	1.6
Wall plug power	MW	200	203	203	216	230	270

Table 3. Main parameters of the various phases of an MC as developed by the MAP effort.

*Accounts for off-site neutrino radiation

https://cds.cern.ch/record/2633584/files/1808.01858.pdf

GRPC Geometry

"AluminumT1","AirT1",	1*mm,3.5*mm,	//Aluminum + Air
"PyrexGlassT1",	2*mm,	//Pirex Glass
"GasGap1",	2*mm,	//GasGap1
"PyrexGlassB1",	2*mm,	//Pirex Glass
"AirB1","AluminumB1",	3.5*mm,1*mm,	//Aluminum + Air
"AluminumT2","AirT2",	1*mm,3.5*mm,	//Aluminum + Air
"PyrexGlassT2",	2*mm,	//PirexGlass
"GasGap2",	2*mm,	//GasGap2
"PyrexGlassB2",	2*mm,	//PirexGlass
"AirB2","AluminumB2",	3.5*mm,1*mm,	//Aluminum + Air

- Geometry as it is currently implemented in MuCollv1
- Dominant materials are:
 - Aluminum
 - Pyrex Glass = SiO_2 (80.6%) + B_2O_3 (13%) + Na_2O (4%) + Al_2O_3 (2.3%)
- Gas: isobutane (4.5%) + $C_2H_2F_4$ (95.2%) + SF_6 (0.3%)

I Collide

Double Gap RPC Geometry

<pre>"MylarElecIns1","totMylarHV1","CopperGND1",</pre>	0.2*mm,0.4*mm,0.038*mm,	//Insulator
"HPL1".	2×mm,	//HPL
"GasGap1",	2*mm,	//GasGap1
"HPL2",	2×mm,	//HPL
"totMylarGND1","CuStrips","FR4Strips","totMylarGND2",	0.2*mm,0.017*mm,0.4*mm,0.2*mm,	//Strips
"HPL3",	2*mm,	1/HPL
"GasGap2",	2*mm,	//GasGap2
"HPL4",	2×mm,	1/HPL
"CopperGND2","totMylarHV2","MylarElecIns2",	0.038*mm,0.4*mm,0.2*mm,	//Readout Board
"AlPanel",	5×mm,	//Rluminum Panel

- CMS geometry
- Dominant materials are:
 - HPL (High Pressure Laminate) = H (5.74%) + C (77.46%) + O (16.8%)
 - Mylar (Geant4 Material DB)
 - Aluminum
- Gas: isobutane (4.5%) + $C_2H_2F_4$ (95.2%) + SF_6 (0.3%)

Ilaria Vai

Triple GEM Geometry

"PCB",	1.2*mm,	//PCB on top
"KaptonFoil",	50*um,	//Kapton window
"DriftKapton", "DriftCopper2",	50*um,35.*um,	//Drift Foil
"GasGap1",	3.*mm,	//Drift Gap
"Gem1Copper1", "Gem1", "Gem1Copper2",	5.*um,50*um,5.*um,	//gem1
"GasGap2",	1.*mm,	//Transfer I Gap
"Gem2Copper1", "Gem2", "Gem2Copper2",	5.*um,50*um,5.*um,	//gem2
"GasGap3",	2.*mm,	//Transfer II Gap
"Gem3Copper1", "Gem3", "Gem3Copper2",	5.*um,50.*um,5.*um,	//gem3
"GasGap4",	1.*mm,	//Induction Gap
"ReadCopper1", "ReadoutBoard",	35.*um,3.2*mm,	//Readout Board

- Simple Triple-GEM geometry
- Dominant materials are:
 - Kapton
 - Copper
 - PCB (FR4)
- Gas: Ar (70%) + CO₂ (30%)

G4Material* SiO2 = new G4Material("quartz",density= 2.200*g/cm3, numel=2); SiO2->AddElement(elSi, natoms=1); SiO2->AddElement(elO , natoms=2);

//from http://www.physi.uni-heidelberg.de/~adler/TRD/TRDunterlagen/RadiatonLength/tgc2.htm
//Epoxy (for FR4)
density = 1.2*g/cm3;
G4Material* Epoxy = new G4Material("Epoxy" , density, numel=2);
Epoxy->AddElement(elH, natoms=2);
Epoxy->AddElement(elC, natoms=2);

//FR4 (Glass + Epoxy)
density = 1.86*g/cm3;
G4Material* FR4 = new G4Material("FR4" , density, numel=2);
FR4->AddMaterial(Epoxy, fractionMass=0.472);
FR4->AddMaterial(Si02, fractionMass=0.528);
fFR4Mat = FR4;

Collaboration

PicoSec Geometry

https://arxiv.org/pdf/1901.03355.pdf

"Radiator",	3*mm,	//Cherenkov radiator
"Photocathode",	20*nm,	//Photocathode
"PCSupport",	10*nm,	//PC Support
"GasGap1",	200.*um,	//Drift Gap
"Mesh",	8.*um,	//Mesh
"GasGap2",	128*um,	//Transfer I Gap
"ReadCopper1","ReadoutBoard"	35.*um,3.2*mm,	//Readout Board

- Prototype geometry
- Dominant materials are:
 - Cherenkov Radiator = MgF₂
 - Need to understand from interaction position study which are the more relevant materials (photocathode is Csl, PC support is Cr, Mesh is Al...)
- Gas: Ne (80%) + C_2H_6 (10%) + CF_4 (10%)

Interaction processes - Neutrons

Muon Collider 1.5 TeV - Triple GEM - Neutron processes

In the energy range considered, the dominant process for neutrons is the inelastic scattering, with the production of secondary heavy ions.

Ilaria Vai

Interaction processes - Neutrons

In the energy range considered, the dominant process for neutrons is the inelastic scattering, with the production of secondary heavy ions.

Muon Collider 1.5 TeV - GRPC - Neutron processes

ternational UON Collider Collaboration

Interaction processes - Photons

Muon Collider 1.5 TeV - Triple GEM - Photon processes

For Triple-GEM, the three main photon processes can be identified clearly. No Al is present, while the Cu (Z=29) contribution is relevant.

Ilaria Vai

Interaction processes - Photons

UNIVERSITÀ

DEGLI STUDI

DI BERGAMO

For GRPCs, photoelectric effect is suppressed, while Compton scattering is dominant, due to the presence of AI (Z=13)

Muon Collider 1.5 TeV - GRPC - Photon processes

Collaboration

Interaction position in the detector – Triple GEM

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Ilaria Vai

"ReadCopper1", "ReadoutBoard",

Interaction position in the detector – GRPC

Total Hit rate In each θ region...

$$Total \ Hit \ Rate = \sum_{E} Hit \ Rate \ (E)$$

Particle	Total Hit Rate (Hz/cm²)
Neutrons	$(2.08 \pm 0.62) \times 10^3$
Photons	$(4.50 \pm 0.05) \times 10^3$

26

Region $\theta < 8^{\circ}$ used as example

