

The Water Cherenkov Test Experiment @ CERN

EPS-HEP 2021 26th July

Mark Scott

Water Cherenkov detectors for neutrino physics

 ν_{μ}

Cherenkov

light cone

U

- Excellent performance:
 - >99% μ/e
 separation
 - 2% momentum resolution
 - 1° direction resolution
- New technologies
 - Gadolinium
 - Water-based liquid scintillator
 - Photo-detector modules

London 26th July 2021 Water Cherenkov detectors in Kamioka Hyper-Kamiokande 188kt fiducial mass Super-Kamiokande 22.5kt fiducial mass Kamiokande 0.7kt fiducial mass

Imperial College

WCTE @ CERN

Neutrino oscillations at T2K

- Super-K has been in operation for 25 years
- T2K has collected data for >10 years
- Some of the most precise measurements of neutrino oscillations

P. Dunne, Neutrino 2020, https://zenodo.org/record/4154355

Systematic uncertainties at T2K

- T2K currently limited by statistical uncertainty, future neutrino experiments will be limited by systematic uncertainty
- SK detector largest uncertainty in electron-like event samples

	$\ $ 1R μ		$1 \mathrm{R}e$			
Error source	FHC	RHC	FHC	RHC	FHC CC1 π^+	FHC/RHC
Flux	2.9	2.8	2.8	2.9	2.8	1.4
Xsec (ND constr)	3.1	3.0	3.2	3.1	4.2	1.5
Flux+Xsec (ND constr)	2.1	2.3	2.0	2.3	4.1	1.7
2p2h Edep	0.4	0.4	0.2	0.2	0.0	0.2
$\mathrm{BG}^{\mathrm{RES}}_{A}$ low- p_{π}	0.4	2.5	0.1	2.2	0.1	2.1
$\sigma(u_e),\sigma(ar{ u}_e)$	0.0	0.0	2.6	1.5	2.7	3.0
NC γ	0.0	0.0	1.4	2.4	0.0	1.0
NC Other	0.2	0.2	0.2	0.4	0.8	0.2
SK	2.1	1.9	3.1	3.9	13.4	1.2
Total	3.0	4.0	4.7	5.9	14.3	4.3

P. Dunne, Neutrino 2020, https://zenodo.org/record/4154355

Secondary interactions

- SK uncertainty includes detector effects and uncertainties in secondary interactions of pions and nucleons
- Little data and very difficult to model

Water Cherenkov Test Experiment

- Goal: study detector systems and detector response to pions, muons, electrons and protons from 200 MeV/c up to 1000 MeV/c
- ~4m diameter, ~4m high cylindrical water Cherenkov detector http://cds.cern.ch/record/2712416/files/?In=en
- Gadolinium sulphate loading planned for neutron detection

Experimental area at CERN

- T9 beam line in the East Area secondary particle beam with momenta ranging from ~400 MeV/c to ~15 GeV/c
- 40m long secondary beamline
 - Pions decay in flight
 - Need tertiary production target

Reconstructed Mass (GeV/c²)

1.2

0.8

0.6

0.4

0.2

0

TOF TO TOF detector with 100ps resolution Target **RPCs** Permanent Magnet (0.1 TM) Very good mass separation (below) Electron Muon Pion 1-FF Kaon Proton Gas and aerogel Cherenkov detectors for higher momentum PID 0.2 0.4 0.6 0.8 1

Momentum (GeV/c)

Imperial College London

Tertiary beamline

WCTE @ CERN 26th July 2021

Tertiary beamline spectrometer

Imperial College

London

Multi-PMT photosensors

- Nineteen 8cm diameter PMTs (Hamamatsu R14374)
- Improved granularity and timing compared to larger PMTs

Detector design

- Internal cylinder composed of rectangular 'scaffold'
- Holds ~130 multi-PMT modules
- Sits inside cylindrical water tank

Detector design

- Internal cylinder composed of rectangular 'scaffold'
- Holds ~130 multi-PMT modules
- Sits inside cylindrical water tank
- Lid provides access, services and calibration ports

WCTE @ CERN 26th July 2021

Translation in T9

• Tertiary beam configuration

Translation in T9

• Secondary beam configuration

WCTE @ CERN 26th July 2021

WCTE at CERN T9 beamline

WCTE @ CERN

Imperial College London

Calibration

- Goal to understand detector response at 1% level
- System to deploy sources to any position within detector
 - Laser diffuser ball
 - NiCf source
 - Neutron source
 - Camera (photogrammetry)
- Ex-situ calibration of multi-PMTs

Summary

- WCTE will study the response of a water Cherenkov detector to charged particles
 - Measure secondary particle interactions
 - Testbed for new technology
 - Demonstrate 1%-level detector calibration
- Crucial measurements for future water Cherenkov detectors
 - Hyper-K, THEIA, ESSvSB
- Recommended by SPSC for beam time in 2023 new collaborators welcome!

WCTE @ CERN 26th July 2021

Back-up slides

WCTE data-taking

- Four data taking periods
 - Pure water run
 - Secondary beam
 - Tertiary beam
 - Gadolinium loaded run
 - Tertiary beam
 - Secondary beam
- Gadolinium removed with resin prior after final data taking run

WCTE @ CERN 26th July 2021

Pion scattering on Oxygen

• From E. S. P. Guerra, Measurement of Pion-Carbon Cross Sections at DUET and Measurement of Neutrino Oscillation Parameters at the T2K Experiment. PhD thesis, York University, 2018.

Tertiary particle rates

N/N_{pot}

- Realistic beamline simulation
- 5×10⁶ particles per spill
- Table shows particles entering detector per spill

Movement System

- Tank filled weight of ~60 tons
- Rail + rollers, move with mechanical winch

Beam windows

- Tertiary and secondary beam windows
- Secondary window has extendable pipe inject particles into bulk of detector

