CMS Tracker Alignment: Legacy results from LHC Run-II and Run-III prospects

Sandra Consuegra Rodríguez (DESY) on behalf of the CMS collaboration

European Physical Society Conference on High Energy Physics, University of Hamburg and DESY, 26-30 July 2021

The CMS tracker

- Precise measurement of the momentum of charged particles
- Reconstruction of secondary and primary vertices

Periodic update of the detector geometry needed

Ultimate performance of track and vertex reconstruction only achieved if detector geometry is known with high accuracy

Alignment of the CMS tracker: general concepts

> tracker geometry: set of parameters that describe the geometrical properties of the tracker modules

> alignment: correction of the position, orientation, and curvature of the tracker sensors

X Hits left on the modules

Track based alignment:

> Minimisation of sum of squares of normalised track-hit residuals ---> $|r_{ij}|$

$$r_{ij}(\mathbf{p},\mathbf{q}_j) = m_{ij} - f_{ij}(\mathbf{p},\mathbf{q}_j)$$

> Each time a part of the tracker is moved/removed ---> re-installation precision of mechanical alignment $O(100 \ \mu m)$ ---> one order of magnitude lower than design hit resolution $O(10 \ \mu m)$

> Alignment aims to push precision well below design hit resolution!

> Two independent implementations of track-based alignment used in CMS during Run-II

 Performs global fit including all correlations of global alignment parameters and local track parameters

- Position and orientation of each sensor determined independently
- Multiple iterations to solve correlations between sensor parameters
- Small matrix inversion on each iteration

Complementary approaches

Tracker alignment strategy for data

> Automated alignment:

- continuous monitoring of high-level structure movements of pixel detector (online)
- geometry automatically corrected if alignment corrections exceed certain thresholds

> Alignment during data taking:

- track-based alignment periodically run offline
- automated alignment refined with periodic updates from the campaigns going on in parallel offline

> Alignment for end-of-year re-reconstruction:

- full statistics of dataset collected during one year used to provide set of alignment conditions for the reprocessing of the data

> Alignment for legacy reprocessing:

- ultimate accuracy of the alignment calibration used for the final or legacy reprocessing of the data

- up to \approx 700k parameters \rightarrow 220 geometries over the three data-taking years to cover significant changes of the alignment conditions over time

Focus of today's talk

Legacy results

Tracker geometry obtained from fit compared to starting geometry

- identify unusual movements or systematic distortions artificially introduced by the fit
- first indication that alignment fit performs well
- > Further validations of the obtained geometry are performed

Tracking performance ---> Distribution of Median Residuals (DMR) validation

Vertexing performance ---> Primary Vertex (PV) validation

Monitoring of systematic distortions ---> Overlap validation

Uniformity of the reconstructed $Z \rightarrow \mu \mu$ mass

Alignment in simulation

Reproduce the procedure adopted for the data as closely as possible

- full alignment fit performed using simulated events
- starting geometry for the fit built from ideal detector geometry, with misalignments applied on top to reflect average accuracy of alignment constants in data after end-of-year re-reconstruction

alignment constants derived from fit validated and compared to data alignment conditions at three different dates during data taking

Track split validation CMS Preliminary **CMS** Preliminarv Data and MC 2017 Data and MC 2017 number of modules / 0.4 μ m _____ Шŋ beamline 200 Run 2 Legacy fraction of tracks / 5 µ Run 2 Legacy Data 18 July $\mu = 0.081 \,\mu\text{m}, \ \sigma = 2.530 \,\mu\text{m}$ Data 18 August $u = 0.168 \text{ um}, \sigma = 1.836 \text{ um}$ Data 18 July $\mu = 0.78 \pm 0.27 \ \mu m$, rms = 34.2 $\pm 0.2 \ \mu m$ 180 Data 05 October $\mu = 0.012 \ \mu m$, $\sigma = 1.579 \ \mu m$ $-0.32 \pm 0.27 \,\mu m \,rms = 34.1 \pm 0.2 \,\mu m$ Data 18 Augus — MC u = 0.032 um. $\sigma = 1.437$ um 160 Data 05 October $\iota = 0.60 \pm 0.27 \ \mu m$, rms = 34.1 $\pm 0.2 \ \mu m$ -0.49 ± 0.25 μm, rms = 32.2 ± 0.2 μm 140 120 original track **BPIX** 1800 100 _{ဖွ} 1600 Default APE Default APE CMS are fitted upper leg CMS 2008 $= -0.02\sigma = 0.49$ $\mu = -0.06\sigma = 0.65$ ັ້ວຂູ່ 1400 Cosneic ray data Cosmic ray data 80 Tuned APE Tuned APE $= -0.02\sigma = 1.07$ $\mu = -0.10\sigma = 1.00$ 1200 ₹d5694 1000 60 800 **፝** 1000 40 80t012 20 0.00refitted lower lea 2 -8 -6 -2 0 4 8 -10 100 0 50 -100 $median(x'_{pred}-x'_{hit})[\mu m]$ Δd_{xv} / √2 (μm) 1800 2500 Default APE Difference of transverse impact parameter between the two halves of cosmic $u = -0.02\sigma = 0.49$ 2000 Tuned APE tracks split at their point of closest approach to the interaction region $\mu = -0.02\sigma = 1.07$ **≝** 1500 Page 9

DMR validation

CERN-THESIS-2011-435

original track

DESY. | CMS Tracker Alignment: Legacy, results from LHC Run-II and Runoll prospects | Sandra Consuegra Rodríguez (DESY)

600

Summary

General concepts of track-based alignment were explained

Tracker alignment performance corresponding to ultimate accuracy of the alignment calibration used for the legacy reprocessing of the CMS Run-II data was presented

- > Alignment strategy for data and simulation was addressed
- > Set of validations that monitor performance of physics observables after the alignment was presented
 - > Tracking and vertexing performance (DMR and PV validation)
 - > Monitoring of systematic distortions
 - Overlap validation
 - Reconstructed $Z \rightarrow \mu\mu$ mass ($Z \rightarrow \mu\mu$ validation)
 - Track split validation

Paper on final state towards publication

Prospects for the alignment calibration during Run-III were discussed

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Sandra Consuegra Rodríguez (DESY) 0000–0002–1383–1837 CMS, Higgs Group sandra.consuegra.rodriguez@desy.de +49–40–8998–3264 Personal website: https://www.desy.de/~consuegs/

> Additional material

References

> CMS Tracker Performance results for full Run 2 Legacy reprocessing

CMS-DP-2020-012

> CMS Tracker Alignment Parameter Errors performance results for full Run 2 Legacy reprocessing

CMS-DP-2020-023

> Additional Run 2 CMS Tracker Alignment Performance Results

CMS-DP-2020-038

> CMS Collaboration "Alignment of the CMS tracker with LHC and cosmic ray data" 2014 JINST 9 P06009

doi:10.1088/1748-0221/9/06/P06009

Legacy results

Tracking performance (DMR validation)

> $\Delta\mu$: indicator of residual bias due to accumulated effects from radiation in the silicon sensors

Difference in the mean of a Gaussian fit to the distribution of normalized median residuals for local-*x* coordinate in the barrel pixel as a function of processed luminosity for the modules with electric field pointing radially inwards or outwards

Tracker alignment strategy for simulation

> Simulated events passed through same reconstruction chain used for data

> Full set of detector calibrations, including the tracker alignment conditions, derived for the processing of simulated events

> Tracker alignment constants provided

> Alignment for end-of-year re-reconstruction:

- scenarios derived separately for each data-taking year
- reasonably reproduce average performance observed in the end-of-year re-reconstruction data alignment

> Alignment for legacy reprocessing:

- emulate the effects of residual misalignment left in data after the alignment for the legacy reprocessing is derived

Alignment position errors (APEs)

Layer 1

Contribution from the misalignment of the sensors to the total hit resolution for the inner ladders of the first and second pixel barrel layer in local *y*-direction

DESY. | CMS Tracker Alignment: Legacy results from LHC Run-II and Run-III prospects | Sandra Consuegra Rodríguez (DESY)

3

Alignment position errors (APEs)

DESY. | CMS Tracker Alignment: Legacy results from LHC Run-II and Run-III prospects | Sandra Consuegra Rodríguez (DESY)

3

Vertexing performance (PV validation)

Mean distance in the longitudinal plane of the tracks at their point of closest approach to a refit unbiased primary vertex

Monitoring of systematic distortions (Overlap validation)

Uniformity of the reconstructed $Z \rightarrow \mu \mu$ mass

