

Contribution ID: 212 Type: Poster

METNet: A combined missing transverse momentum working point using a neural network with the ATLAS detector

In order to suppress pile-up effects and improve resolution, ATLAS employs a suite of working points for missing transverse momentum ($p_{\rm T}^{\rm miss}$) reconstruction, and each is optimal for different event topologies and different beam conditions. A neural network (NN) can exploit various event properties to pick the optimal working point on an event-by-event basis and also allows to combine complementary information from each of the working points. The resulting regressed $p_{\rm T}^{\rm miss}$ (METNet) offers improved resolution and pile-up resistance across a number of different topologies compared to the current $p_{\rm T}^{\rm miss}$ working points. Additionally, by using the NN's confidence in its predictions, a machine learning-based $p_{\rm T}^{\rm miss}$ significance ('METNetSig') can be defined. This poster presents simulation-based studies of the behaviour and performance of METNet and METNetSig for several topologies compared to current ATLAS $p_{\rm T}^{\rm miss}$ reconstruction methods.

Collaboration / Activity

ATLAS

First author

Benjamin Haslum Hodkinson

Email

bh490@cam.ac.uk

Primary author: HASLUM HODKINSON, Benjamin (Cambridge)

Presenter: HASLUM HODKINSON, Benjamin (Cambridge)Session Classification: T10: Searches for New Physics

Track Classification: Searches for New Physics