

Recent results of D⁰ mesons azimuthal anisotropy using the CMS detector

CESAR A. BERNARDES IF-UFRGS, SPRACE

Introduction

Charm quarks produced in the primordial stages of the collision (~0.1 fm/c)

 $m_{charm} >> typical medium temperatures \rightarrow experience the medium full evolution$

Very good probe of initial state effects in both "Large" (PbPb) and "Small" (pp, pPb) colliding systems

□ Small systems: origin of observed collective effects?

Large systems

- Understanding of energy loss and coalescence mechanisms
- Electromagnetic (EM) fields effects at initial stages?
 - $\,\circ\,\,\Delta v_n$ between positive & negative electric charges

The CMS Detector

Lead-lead (PbPb) Collisions

D⁰ Reconstruction and Selection: 2018 Data

Minimum Bias events from PbPb collisions at 5.02 TeV

Nonprompt (NP) D⁰ contamination (from B hadron decay) as systematic uncertainty
 Estimate contribution using DCA variable (nonprompt D⁰ enriched region for DCA > 0.012 cm)

Signal Extraction

Simultaneous fit on mass distribution and $v_n (\Delta v_n)$ versus mass

v_n measured using Scalar Product (SP) method: correlates D⁰ meson in tracker region with particles in HF

Mass fit: background (3rd order polynomial), signal (double Gaussian), swap (single Gaussian)
 ν_n background (linear function), Δν_n (background is canceled)

Flow Coefficients ($v_2 \& v_3$) as Functions of p_T

Similar trends compared to charged particles

- v₂ : considerable dependence on 0.25 centrality 0.2
- v₃ : small dependence on centrality

Theory

- Resonable qualitative description_0.06
- TAMU
 - Added event-by-event spacemomentum correlations -0.02
 (SMCs) between charm quarks-0.04
 and the high-flow partons in the QGP medium

$\Delta v_2(D^0 - \overline{D^0})$ as Function of Rapidity

Electric field can generate non-zero Δv_2

□ Currently, no theoretical predictions for D⁰ mesons

- Predictions for charged hadrons at LHC energies: $|\Delta v_2| \sim 0.001$ [Phys. Rev. C **98**, 055201 (2018)]
- Expected bigger values for D⁰ [Phys. Rev. C 98, 055201 (2018)]

Average value extracted with a fit to data

 $\Delta v_2^{\text{Fit}} = 0.001 \pm 0.001 \text{ (stat)} \pm 0.003 \text{ (syst)}$

Comparable to the values for charged hadrons

Constrain medium properties: electric conductivity

Scalar Product method use large eta gap → non-flow is suppressed

Comparison of the ratio between charm and charged particles Study of fluctuations from initial-state geometry and energy loss

$D^0 v_2^{4} v_5 p_T$

Overall $v_2{4} < v_2{2}$

$v_2{4}/v_2{2}$ comparison

- □ 10-30%: consistent with charged particles [>]
- 30-50%: hint of splitting of ratio between D⁰ and charged particles at high-p_T
 - Energy loss fluctuation effects
 become more significant?

Theoretical calculations

□ Resonable qualitative description DAB-MOD [Phys. Rev. C **102**, 024906 (2020)]

D⁰ v₂{4} vs Centrality

- v₂{4} increasing and then declining: explained by initial collision geometry
- v₂{4}/v₂{2} comparison
 - □ 10-40%: consistent with charged particles
 - More central and peripheral
 - Hint of splitting between D⁰ and charged particles
 - Energy loss fluctuation effects more visible for D⁰ mesons?
 - Theoretical calculations
 - Better description from Langevin dynamics for 10-50%
 - Larger deviation for 50-60%, but large uncertainties

DAB-MOD [Phys. Rev. C 102, 024906 (2020)]

Proton-proton (pp) & proton-lead (pPb) Collisions

Prompt $D^0 v_2$ in pp@13 TeV

Phys. Lett. B 813, 136036 (2021) After non-flow subtraction pp 11.5 pb⁻¹ (13 TeV) CMS 0.15 \Box Single particle v₂ from V^S₂ using Prompt D⁰ $|y_{lab}| < 1$ charged particles as reference $\Box K_{S}^{0}$ 0.1 $(0.3 < p_T < 3.0 \text{ GeV/c})$ $\circ \Lambda/\overline{\Lambda}$ ŧ പം h[±] $v_n(\mathbf{D}^0) = V_{n\Delta}(\mathbf{D}^0, \operatorname{ref}) / \sqrt{V_{n\Delta}(\operatorname{ref}, \operatorname{ref})}$ v_2^{sub} 0.05 Prompt $D^0 v_2$ slightly below 0 strange particles $N_{trk}^{offline} \ge 100$ Similarly to pPb -0.05 v_2 compatible with zero at 2 6 7 0 3 p_{_} (ĠeV) high-p_⊤

8

Nonprompt D⁰ Meson v₂

Subtract non-flow effects and divide by reference particles V_n

Prompt D⁰ v₂ comparable with J/ψ

Comparison with Color Glass Condensate (CGC) models for b hadrons

Feed-down effects & decays by pythia 8

Nonprompt D⁰ Meson v₂

Subtract non-flow effects and divide by reference particles V_n

Prompt D⁰ v₂ comparable with J/ψ

Comparison with Color Glass Condensate (CGC) models for b hadrons

Feed-down effects & decays by pythia 8

Indication of flavor hierarchy between charm and bottom quarks at low- p_T

Summary

PbPb collisions

 \Box D⁰ mesons v₂ and v₃ from 2-particle correlations

- Higher p_T coverage and finer bins in both p_T and centrality
- Measurement of $\Delta v_2 (D^0 \overline{D^0})$
 - $\circ~$ Information can constrain medium electric conductivity
- \Box D⁰ mesons v₂ from four-particle cumulants
 - Energy loss fluctuation effects more visible for D⁰ mesons compared to charged particles?

pp and pPb collisions

- □ Non-zero v_2 values for prompt D⁰ in pp collisions
- Indication of hierarchy between c- and b- quarks
- □ Resonable description of D⁰ mesons flow by CGC models

Thank You!

THIS MATERIAL IS BASED UPON WORK SUPPORTED BY THE SÃO PAULO RESEARCH FOUNDATION (FAPESP) GRANTS NO. 2018/01398-1 AND NO. 2013/01907-0. ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS EXPRESSED IN THIS MATERIAL ARE THOSE OF THE AUTHOR(S) AND DO NOT NECESSARILY REFLECT THE VIEWS OF FAPESP.

CAPES PRINT GRANT NO. 88887.468124/2019-00

BACKUP

2018 PbPb Data

Flow Measurement: Scalar Product Method

 v_2 , v_3 , $\Delta v_2(D^0 - \overline{D^0})$ as functions of centrality, rapidity and p_T

(1<|y|<2)

Overall similar behavior

 Small deviation at high-p_T
 Similar features as in charged hadrons

Important information for 50.05 3D hydrodynamic medium description

$v_2 \& v_3$ as Functions of $p_T (|y| < 1 \text{ vs } 1 < |y| < 2)$ First time: forward region

$v_2 \& v_3$ as Function of Centrality and Rapidity

Centrality bins

- Mid-rapidity & forward region: similar trends
- Clear dependence of v₂ as function of centrality
- \Box v₃ is almost constant with centrality
- v_n trends understood in terms of collision geometry CMS Phys. Lett. B 816,

Rapidity bins

- Weak dependence observed
- Slight tendency to lower values at larger rapidities

EM Fields in HI Collisions

Electromagnetic Fields in PbPb Collisions

Strong and short lived EM fields in PbPb collisions at LHC

- Generated by spectators and participants
- Charge-odd contributions to flow coefficients (v_n)
 - Non-zero Δv_n for opposite-charge
- Measurements constrain medium parameters
 - E.g. electric conductivity

Effect on Δv_1 of D⁰($\overline{u}c$) Mesons

Charm quarks produced in primordial stages of collision (\sim 0.1 fm/c)

m_{charm} >> typical medium temperatures: lower probability of annihilation

EM fields vanish very fast: peak magnitude approx. 0.1 - 0.2 fm/c

Non-zero Δv_1 mainly due to magnetic field from spectators

27

Effect on Δv_2 of D⁰ Mesons

Mostly produced by Electric field from collision participants Coulomb interaction

4-particle Cumulant Method

Four-particle Cumulants (I)

Liuyao Zhang, IS2021

Differential flow: PRC 83, 044913(2011)

$$\nu_{n}^{\prime}\{4\}(D^{0}) = -\frac{d_{n}\{4\}(D^{0})}{(-c_{n}\{4\})^{3/4}} (1) c_{n}\{4\} = \langle\langle 4 \rangle\rangle - 2 * \langle\langle 2 \rangle\rangle^{2} (2) c_{n}\{4\} = \langle\langle 4 \rangle\rangle - 2 * \langle\langle 2 \rangle\rangle^{2} (3)$$

 d_n {4}: fourth-order differential cumulant. c_n {4}: four-particle cumulant \rightarrow reference flow.

Note: weight $M^{HF-} = \sum (E_T)_i$ from HF-, $M^{HF+} = \sum (E_T)_i$ from HF+

Motivation to Use the Ratio

Liuyao Zhang, IS2021

3. why uses four-particle correlation technique to measure harmonic flows. \Rightarrow To judge the fluctuation from soft and hard components

Small Systems

Nonprompt (NP) D⁰ mesons in pPb collisions

Nonprompt D⁰ mesons mostly from B hadrons decay

Distinguish prompt vs nonprompt D⁰ mesons by using DCA variable

Template fits using Monte Carlo simulations to extract nonprompt D⁰ fractions

Non-flow subtraction: jets contribution

Removes residual contribution of back-to-back dijets to the measured v₂ results

 \Box Little dependence on p_T over full p_T range

Jet yield := difference between integrals of the short-range ($|\Delta\eta|$ <1) and longrange ($|\Delta\eta|$ >2) event-normalized associated yields for each multiplicity class

Multiplicity Dependence

First time: $D^0 v_2$ as function of N_{trk} in pp and pPb collisions

Within uncertainties, no clear trends for $v_2 \; Vs \; N_{trk}$ in pp

Compatible results of pp and pPb for multiplicities around 100

Significant non-zero v₂ values down to multiplicity equal to 50 in pPb

