

Quarkonium measurements in nucleus-nucleus collisions with ALICE

Kunal Garg On behalf of the ALICE Collaboration

European Physical Society conference on High Energy Physics 2021, July 26-30, 2021

Quarkonium studies in Pb-Pb

Direct quarkonium production suppressed due to:

- Color screening (static)
- Decoherence (dynamical)
- Additional production mechanism: (re)generation of quarkonium
- Quarkonium can be used to study deconfinement of the QGP

- In ultra-peripheral collisions(UPC), hadronic interaction strongly suppressed.
- Photoproduction of vector mesons (VM) in UPC with clean experimental signature
 Very low p_T production, large rapidity gaps
- Provides information on hadron structure of protons and nuclei at low x

EPS-HEP 2021

Quarkonium detection at mid-rapidity |y| < 0.9J/ $\psi \rightarrow e^+e^-$, Down to zero p_T ITS+TPC : tracking and PID SPD (ITS) : primary and secondary vertices Separation of prompt and non-prompt J/ ψ Quarkonium detection at forward rapidity 2.5 < y < 4 $J/\psi \rightarrow \mu^+\mu^-, \psi(2S) \rightarrow \mu^+\mu^-, \Upsilon \rightarrow \mu^+\mu^-$ Down to zero p_T MCH : tracking MTR : trigger ITS : primary vertex

V0: Triggering, and event characterisation

Yvonne Pachmayer 27/07 9:30 T06

J/ψ Nuclear modification factor

> Suppression at forward y relative to mid-y at low p_T

- Statistical hadronization model describes the data at low p_T
- \succ Transport model agrees with data for all p_{T}

EPS-HEP 2021

*Y*_{PbPb}

 $N_{\rm coll} \times Y_{\rm pp}$

R_{AA}

J/ψ Nuclear modification factor

> Suppression at forward y relative to mid-y at low p_T

- Statistical hadronization model describes the data at low p_T
- > Transport model agrees with data for all p_{T}

The statistical hadronization model and transport model can describe the data within the uncertainties

Y(nS) Nuclear modification factor

arXiv:2011.05758

- Strong suppression of $\Upsilon(1S)$ with respect to elementary collisions
- Comovers, Hydro models describe the data well as a function of centrality

Y(nS) Nuclear modification factor

arXiv:2011.05758

- Strong suppression of $\Upsilon(1S)$ with respect to elementary collisions
- Comovers, Hydro models describe the data well as a function of centrality
- > The R_{AA} of $\Upsilon(1S)$ at midrapidity almost flat -> decreases at forward rapidity
- > For $\Upsilon(2S)$, the rapidity dependence is flat within the uncertainties

J/ψ and $\Upsilon(1S) v_2$ (Forward-y)

- > Observation of positive J/ ψv_2 , agreement with transport model at low p_T , suggests charm quark thermalisation
- > The $\Upsilon(1S) v_2$ is consistent with zero and lower than J/ ψv_2 by 2.6 σ

TM: <u>Nucl.Phys.A 943(2015)147-158</u> BBJS: <u>Phys. Rev. C **100**, 051901(R)</u>

 $\frac{\mathrm{d}N}{\mathrm{d}\varphi} \propto 1 + 2\sum_{n}^{\infty} v_n \cos(n(\varphi - \Psi n))$

$J/\psi v_2$ and v_3

Clear mass hierarchy at low p_T : $v_2(\pi) > v_2(D) > v_2(J/\psi)$

 \succ Similar behaviour for v_3

v₂ grows from central to semicentral collisions

Polarisation: spin alignment w.r.t a chosen direction

 $W(\cos\theta, \phi) \propto \frac{1}{3+\lambda_{\theta}} (1 + \lambda_{\theta} \cos^2\theta + \lambda_{\phi} \sin^2\theta \sin 2\phi + \lambda_{\theta\phi} \sin 2\theta \cos\phi)$

 \blacktriangleright First measurement of J/ ψ polarization in A–A collisions

Phys. Lett. B 815 (2021) 136146

Polarisation: spin alignment w.r.t a chosen direction

 $W(\cos\theta, \phi) \propto \frac{1}{3+\lambda_{\theta}} (1 + \lambda_{\theta} \cos^2\theta + \lambda_{\phi} \sin^2\theta \sin 2\phi + \lambda_{\theta\phi} \sin 2\theta \cos \phi)$

First measurement of J/ψ polarization in A–A collisions

 $\lambda_{\theta}, \lambda_{\Phi}, \lambda_{\theta\Phi}$ close to zero in HE and CS frames in Pb-Pb:

- > Maximum deviation of $\sim 2\sigma$ in the low- p_T bin
- Indication of small transverse polarization in HE frame and small longitudinal polarization in CS frame for 2<p_T <4GeV/c</p>

 λ_{θ} , λ_{Φ} , $\lambda_{\theta\Phi}$ close to zero in HE and CS frames in Pb-Pb:

- > Maximum deviation of $\sim 2\sigma$ in the low- p_T bin
- Indication of small transverse polarization in HE frame and small longitudinal polarization in CS frame for 2<p_T <4GeV/c</p>
- > λ_{θ} , λ_{Φ} , $\lambda_{\theta\Phi}$ compatible within uncertainties with ALICE results at $\sqrt{s} = 8$ TeV in pp collisions
 - Significant difference for λ_{θ} at low p_{T} in HE frame with LHCb data in pp collisions at $\sqrt{s} = 7$ TeV

 λ_{θ} , λ_{Φ} , $\lambda_{\theta\Phi}$ close to zero in HE and CS frames in Pb-Pb:

- > Maximum deviation of $\sim 2\sigma$ in the low- p_T bin
- Indication of small transverse polarization in HE frame and small longitudinal polarization in CS frame for 2<p_T <4GeV/c</p>
- > λ_{θ} , λ_{Φ} , $\lambda_{\theta\Phi}$ compatible within uncertainties with ALICE results at $\sqrt{s} = 8$ TeV in pp collisions
 - Significant difference for λ_{θ} at low p_{T} in HE frame with LHCb data in pp collisions at $\sqrt{s} = 7$ TeV
- No significant centrality dependence of the J/ψ polarization
 - Polarization studies as a function of the Event Plane are ongoing

Coherent J/ ψ photoproduction in Pb–Pb collision with nuclear overlap

Yvonne Pachmayer 27/07 9:30 T06

An excess over hadroproduction expectation in the J/ψ yield attributed to coherent photoproduction in peripheral and semicentral Pb–Pb collisions measured at Vs_{NN}= 2.76 and 5.02 TeV

Ultra peripheral collisions (UPC)-like models with modification of the photon flux can reproduce the peripheral data.

Need to account for modification of photonuclear cross section and various coupling scenarios for semi-central events

Ultra-peripheral Collisions(UPC)

|t| dependence of coherent J/ ψ photoproduction

- > The first measurement ever of the |t|-dependence of the J/ ψ photonuclear production cross section
- |t| obtained from J/ψ p_T² measurement + unfolding

 $\left. \frac{\mathrm{d}^2 \sigma_{\mathrm{J}/\psi}^{\mathrm{coh}}}{\mathrm{d}y \mathrm{d}p_{\mathrm{T}}^2} \right|_{y=0} = 2n_{\gamma \mathrm{Pb}}(y=0) \frac{\mathrm{d}\sigma_{\gamma \mathrm{Pb}}}{\mathrm{d}|t|}.$

- STARLIGHT calculation (Pb form factor) without shadowing/saturation overpredicts the data
- Models incorporating nuclear shadowing (LTA) or gluon saturation (b-BK) describe well the data

Atomic Mass Number (A) dependence of coherent ρ_0 photoproduction

- The A dependence of the ρ₀ photonuclear cross section explored with two collision systems: Xe–Xe and Pb–Pb
- Measured slope of cross section with A:
 - Approximately linear
 - Close to model with strong nuclear effects (GKZ, CCKT)

Conclusions

J/ψ

> Increasing precision in measurements of R_{AA} confirming the regeneration picture

> Transport model underestimates v_2 at intermediate/high p_T

First measurement of close to zero polarisation

Conclusions

J/ψ

- Increasing precision in measurements of R_{AA} confirming the regeneration picture
- > Transport model underestimates v_2 at intermediate/high p_T
- First measurement of close to zero polarisation

Υ(nS)

> Strong suppression for $\Upsilon(1S)$ and $\Upsilon(2S)$ in Pb–Pb collisions

> Measurements consistent with zero v_2 for $\Upsilon(1S)$

Conclusions

J/ψ

Increasing precision in measurements of R_{AA} confirming the regeneration picture

> Transport model underestimates v_2 at intermediate/high p_T

First measurement of close to zero polarisation

Υ(nS)

> Strong suppression for $\Upsilon(1S)$ and $\Upsilon(2S)$ in Pb–Pb collisions

> Measurements consistent with zero v_2 for $\Upsilon(1S)$

Photoproduction

- First measurement of |t| dependence of J/ ψ production -> described by models with gluon saturation or nuclear shadowing
- \triangleright Excess J/ ψ in Pb–Pb collisions can be attributed to photoproduction
- \triangleright ρ_0 production found to have linear dependence with A

Thank You

Back-Up slides

J/ψ Triangular Flow (v_3) (forward y)

- v₃ is sensitive to initial state energydensity fluctuations
- > Inclusive $J/\psi v_3$ positive in most of the p_T and centrality intervals
- Same mass hierarchy as for v_2 : $v_3(\pi) > v_3(D) > v_3(J/\psi)$

J/ψ Polarisation vs Centrality

y dependence of coherent J/ ψ photoproduction

- Comparison of data to impulse approximation (no nuclear effects) leads to a nuclear suppression factor S_{Pb}(x ~10-3) ~ 0.65 ± 0.03
- STARLIGHT model (no gluon shadowing) overpredicts the data
- GKZ with EPS09 shadowing and the GG-HS agree with data at forward and midrapidity, but not at semi-forward rapidity (2. 5 < y < 3. 5)</p>

EPS-HEP 2021

$\Upsilon(nS) R_{AA}$ Ratio

- Excited-to-ground state R_{AA} ratios are in agreement with Hydro calculations, Transport model and coupled Boltzmann equations
- Underestimation by comovers model for most central collisions

J/ψ Polarisation as Event-Shape Engineering

> $J/\psi v_2$ coefficient in low (high) q_2^{VOA} event classes are found to be lower (higher) with respect to those in the unbiased events Ratios in the event-shape selected and unbiased events show no p_T dependence up to 10 GeV/c

> $J/\psi v_2$ results compatible with the expected variations of the eccentricity of the initial-state geometry within the uncertainties.

$\Upsilon(nS) R_{AA}$ vs centrality

Strong suppression of $\Upsilon(1S)$ in the most central collisions

- \succ R_{AA} of $\Upsilon(2S)$ is smaller than $\Upsilon(1S)$ by a factor of 3
- Comovers, Transport, Hydro models describe the data

$\Upsilon(nS) R_{AA} vs p_T and y$

