Recent LHCb results on charm in the QCD medium

Chenxi Gu, Tsinghua University on behalf of the LHCb collaboration

Outline

- Introduction
- LHCb detector and datasets
- Charm results in the QCD medium at LHCb > Prompt D^0 meson production in *p*Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV LHCb-CONF-2019-004
 - Charm pair production and DPS in *p*Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV PHYS. REV. LETT. 125 (2020) 212001
 - ▶ Prompt cross-section ratio $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ in *p*Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV New!

PHYS. REV. C103 (2021) 064905

• Summary and outlook

Introduction

- The study of *p*Pb collisions is important to disentangle the effects of cold nuclear matter from effects of quark gluon plasma :
 - Parton distribution functions are modified inside a nucleus.(shadowing and antishadowing effects)
 - Charmonium suppression due to interactions with the comoving particles.
- LHCb advantages for such study:
 - \succ Low $p_{\rm T}$ coverage for heavy flavor
 - Forward rapidity coverage
 - \blacktriangleright Separation of prompt and *b* decay components
- LHCb *p*Pb collisions constrain the nPDFs.

LHCb detector

- A single-arm spectrometer in the forward direction
- Acceptance
 > 2 < η < 5
- Charm & beauty factory
 - ➤ Vertex Locator
 - * 20 μm IP resolution
 > Tracking system
 * Δp/p = 0.5 1.0%(5 200GeV/c)
 > RICH: p/K/π separation
 * ε(K → K)~95%
 * Mis-ID:ε(π → K)~5%
 > Muon system
 * ε(μ → μ)~97%
 - ♦ Mis-ID:ε(π → μ)~3%
 ▶ Flexible software trigger

LHCb, JINST 3 (2008) S08005 LHCb, IJMPA 30 (2015) 1530022

Datasets : *p*Pb runs at $\sqrt{s_{NN}} = 8.16$ TeV

- *p*Pb data was taken in 2016 with asymmetric collision configuration.
 - \succ Forward (*p*Pb)
 - ≻ Backward (Pbp)
- Beam characteristics
 - ➢ 6500 GeV proton beam and 2560 GeV/nucleon Pb beam
 - Center of mass rapidity shift $y^* y_{lab} = -0.465$ in direction of proton
 - ≻ Luminosity : 13.6 nb⁻¹(*p*Pb) + 20.8 nb⁻¹(Pb*p*)
- Rapidity acceptance
 - > *p*Pb : $1.5 < y^* < 4.0$ > Pb*p* : $-5.0 < y^* < -2.5$

Prompt D^0 meson production in *p*Pb at 8.16 TeV LHCb-CONF-2019-004

- Decay modes : $D^0 \to K^- \pi^+$ & c.c
- Inclusive D^0 yield extracted from $K^-\pi^+$ invariant mass fits.
- Impact parameter (IP) is used to seperate the prompt and non-prompt components. The D^0 with smaller impact parameter is more likely to originate from the primary interaction.

Prompt D^0 meson production in *p*Pb at 8.16 TeV LHCb-CONF-2019-004

- $R_{\rm FB}$ show a rising trend with $p_{\rm T}$
 - Consistent with 5.02 TeV results and calculations with nPDFs at low p_{T} .
 - > Larger than theoretical predictions at high $p_{\rm T}$.
- $R_{\rm FB}$ show a slight dependence on y^*
 - Consistent with nPDFs and 5.02 TeV measurement.

$$R_{
m FB}(p_{
m T},y^*) \equiv rac{{
m d}^2 \sigma_{p
m Pb}(p_{
m T},+|y^*|)/{
m d} p_{
m T} {
m d} y^*}{{
m d}^2 \sigma_{
m Pbp}(p_{
m T},-|y^*|)/{
m d} p_{
m T} {
m d} y^*}$$

J.-P. Lansberg and H.-S.Shao, EPJC 77 (2017) S10052. A.
Kusina, et al., PRL 121 (2018) 052004.
H.-S. Shao, CPC 184 (2013) 2562-2570.
H.-S. Shao, CPC 198 (2016) 238-259.

Chenxi Gu, EPS-HEP 2021

y*

Charm pair production in pPb at 8.16 TeV

- First measurement of charm pair production in heavy ion collisions.
 - Double parton scattering (DPS) is predicted to be enhanced in heavy ion collisions.
 - > Test universality of σ_{eff} in DPS.
- Single parton scattering
 - Kinematic correlated
 - Cross section is expected to scale with the ion mass number
- Double parton scattering
 - Cross section is enhanced compare to a mass number scaling due to collisions of partons from two different nucleons in the ion
- D_1D_2 and $J/\psi D$ pairs are measured $(D = D^0, D^+, D_s^+)$
 - > Opposite-sign (OS), e.g. $D^0\overline{D^0}$ SPS enrich
 - > Like-sign (LS), e.g. $D^0 D^0$ DPS enrich

Charm pair correlations in pPb at 8.16 TeV

Double charm hadron invariant mass m_{DD}

- Hints of difference between LS and OS pairs
- > OS pairs consistent with Pythia8 simulation

Azimuthal angle between the charm hadron pair Δφ(DD)
Difference between LS and OS pairs.
>OS pairs favor values Δφ ∽ 0 (near side peak)
>LS pairs consistent with flat distribution (uncorrelated pair).

Charm pair production in *p*Pb at 8.16 TeV

LS/OS ratios are enhanced in *p*Pb compared to *pp*.

Suggesting DPS/SPS enhanced by a factor ~3 in *p*Pb compared to *pp*.

- Effective cross-section σ_{eff} consistent with expected factor ~3 enhancement.
- $\sigma_{\text{eff},p\text{Pb}}^{J/\psi D^0} < \sigma_{\text{eff},p\text{Pb}}^{D^0 D^0}$ possibly due to SPS contamination or DPS enhancement in $J/\psi D^0$ production.
- $\sigma_{\text{eff},p\text{Pb}} > \sigma_{\text{eff},\text{Pb}p}$ suggesting a suppression of DPS in *p*Pb data compared to Pb*p*.

Chenxi Gu, EPS-HEP 2021

Prompt cross-section ratio $\sigma(\chi_{c2})/\sigma(\chi_{c1})$

- First measurement of P-wave charmonia in nuclear collisions at LHC.
- χ_{cj} is sensitive to final-state nuclear effects.
- Reconstruction via $\chi_{cj} \rightarrow J/\psi \gamma$, followed by $J/\psi \rightarrow \mu\mu$. Classify the event by photon sources:
 - > Converted photons : e^+e^- reconstructed in the tracking system. (high momentum resolution)
 - Calorimetric photons : reconstructed in the electromagnetic calorimetric. (larger sample)

$$t_z = rac{(z_{
m decay}\,-z_{
m PV}) imes M_{\chi_{c1}}}{p_z}$$

- Selection of prompt χ_{cj} by pseudodecay time t_z .
- Tracking and particle-identification efficiencies cancel out in the ratio due to similar kinematics of χ_{c1} and χ_{c2} decays.

інср

PHYS. REV. C103 (2021) 064905

11

PHYS. REV. C103 (2021) 064905

Prompt cross-section ratio $\sigma(\chi_{c2})/\sigma(\chi_{c1})$

- The cross-section ratio $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ is consistent with unity at both forward and backward rapidity regions.
- Ratio $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ is larger in *p*Pb than in *pp*, although they are consistent within uncertainty.
- Results suggest that the final-state nuclear effects impact the χ_{c1} and χ_{c2} states similarly within the achieved precision.

 $\mathcal{R}\equiv rac{\sigma(\chi_{c2})/\sigma(\chi_{c1})ert_{p ext{Pb}}}{\sigma(\chi_{c2})/\sigma(\chi_{c1})ert_{pp}}$

Ratio of nuclear-modification factors $\mathcal{R}_{\text{forward}} = 1.41 \pm 0.21 \pm 0.18$ $\mathcal{R}_{\text{backward}} = 1.44 \pm 0.24 \pm 0.25$

Summary and outlook

- Prompt D⁰ meson production in *p*Pb at 8.16 TeV
 ➢ Hint of *R*_{FB} increases with increasing *p*_T.
- Charm pair production in *p*Pb at 8.16 TeV
 Observes 3 times DPS/SPS enhancement in *p*Pb compared to *pp*Observes a suppression of DPS in *p*Pb data compared to Pbp.
- Prompt cross-section ratio σ(χ_{c2})/σ(χ_{c1}) in *p*Pb at 8.16 TeV
 The final-state nuclear effects impact the χ_{c1} and χ_{c2} states similarly within the achieved precision.
- Lots of new results Upcoming:
 >D mesons in *p*Pb
 >Λ_c in PbPb

