

EPS-HEP Conference 2021 European Physical Society conference on high energy physics 2021 Online conference, July 26-30, 2021

Accessing the initial conditions of Pb-Pb, Xe-Xe and pp collisions with ALCE

Emil Gorm Nielsen for the ALICE collaboration (Niels Bohr Institute)

THE VELUX FOUNDATIONS VILLUM FONDEN 🚿 VELUX FONDEN

- Overlap between colliding nuclei has specific size and shape
 - Initial state, geometry and its fluctuations
- Initial spatial anisotropy transferred to final state momentum anisotropy
 - Quantified with $v_n = \langle \cos n(\varphi \Psi_n) \rangle$

Emil Gorm Nielsen (NBI) | July 26th

Anisotropic flow

J. Schukraft et al, PLB 719 (2013), 394 H. Petersen et al, PRC 88 (2013), 044918 P. Huo et al, PRC 90 (2014), 024910

- Overlap between colliding nuclei has specific size and shape
 - Initial state, geometry and its fluctuations
- Initial spatial anisotropy transferred to final state momentum anisotropy
 - Quantified with $v_n = \langle \cos n(\varphi \Psi_n) \rangle$

Event-shape engineering

Select events with similar centralities, but different shapes based on the event-by-event flow/eccentricity fluctuations

Emil Gorm Nielsen (NBI) | July 26th

Anisotropic flow

2 / 10

- Size of the fireball: radial flow, $[p_T]$
- Shape of the fireball: anisotropic flow
- \diamond Current tuned hydrodynamic calculations can describe v_n and $[p_T]$ separately
 - State-of-the-art understanding of initial conditions and transport properties of the QGP

Study with Pearson correlation coefficient:

$$\rho(v_n^2, [p_{\rm T}]) = \frac{cov(v_n^2, [p_{\rm T}])}{\sqrt{var(v_n^2)\sqrt{var([p_{\rm T}])}}}$$

Emil Gorm Nielsen (NBI) | July 26th

Correlations of mean transverse momentum and flow

Size: Mean transverse momentum

Size & Shape: v_n -[p_T]

Initial state

Final state

3 / 10

Probing the initial state

- Agreement between initial state estimations and final state calculations $\rightarrow \rho_n$ directly reflects information from the initial state!
- \clubsuit Low multiplicity region: geometry \rightarrow initial momentum correlations (CGC?)
- Sensitive to nuclear deformation

Emil Gorm Nielsen (NBI) | July 26th

Correlations of mean transverse momentum and flow

The ALICE experiment

- Inner tracking system (ITS)
- Time projection chamber (TPC)
- Time-of-flight (TOF)
- $VOA(2.8 < \eta < 5.1)$ and $VOC(-3.7 < \eta < -1.7)$

Emil Gorm Nielsen (NBI) | July 26th

✤ Data:

- Pb–Pb at $\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}$
- Xe–Xe at $\sqrt{s_{\rm NN}} = 5.44$ TeV
- pp at $\sqrt{s} = 13$ TeV

ALICE

Identified particle $v_n(p_T)$ with q_2 selection

* q_2 selection biases smaller or larger v_2 than average for inclusive and identified particles

Emil Gorm Nielsen (NBI) | July 26th

Identified particle $v_n(p_T)$ with q_2 selection

- \mathbf{A}_{2} selection biases smaller or larger v_{2} than average for inclusive and identified particles
- v_2 with q_2 selection:
 - $p_{\rm T} > 3 \text{ GeV}/c$: ratios almost flat same source of flow fluctuations
 - $p_{\rm T} < 3 \,\,{\rm GeV}/c$:
 - 5-10% centrality: $p_{\rm T}$ dependence
 - 30-40% centrality: no $p_{\rm T}$ dependence
- v_3 with q_2 selection
 - v_3 anticorrelated with q_2
 - Flat ratio up to $p_{\rm T} = 8 \text{ GeV}/c$
- Same values for inclusive and identified particles

Emil Gorm Nielsen (NBI) | July 26th

v_3 with q_2 selection

EPS-HEP 2021

Centrality dependence of $\rho(v_2^2, [p_T])$

- Positive $\rho(v_2^2, [p_T])$ in the presented centrality range Pb -Pb larger than Xe-Xe
- Comparison to hydro models:
 - IP-Glasma+MUSIC+UrQMD works well for Pb–Pb, overestimates Xe–Xe
 - Comparison of IP-Glasma w/ and w/out CGC rule out CGC effects in the presented centrality \rightarrow Must be due to geometry!
 - TRENTo-IC based calculations strong centrality dependence - negative above 40-50% centrality

G. Nijs et al, PRC 103 (2021) 5, 054909, B. Schenke et al, PRC 102 (2020) 4, 044905 J. Noronha-Hostler et al, PRC 88 (2013) 4, 044916, J. S. Moreland et al, PRC 92 (2015) 1, 011901

7 / 12

Centrality dependence of $\rho(v_2^2, [p_T])$

- ♦ Positive $\rho(v_2^2, [p_T])$ in the presented centrality range Pb -Pb larger than Xe-Xe
- Comparison to hydro models:
 - IP-Glasma+MUSIC+UrQMD works well for Pb–Pb, overestimates Xe–Xe
 - Comparison of IP-Glasma w/ and w/out CGC rule out CGC effects in the presented centrality→ Must be due to geometry!
 - TRENTo-IC based calculations strong centrality dependence negative above 40-50% centrality
- Comparison to initial state calculations:
 - TRENTo-IC fails to describe ALICE data
 - State-of-the-art Bayesian analysis based on failing initial condition
 - Sensitive to deformation parameter up to 20-30% previous study only sensitive in 0-10% centrality¹
- ¹ ALICE collaboration, PLB 784 (2018) 82-95

G. Nijs et al, PRC 103 (2021) 5, 054909, B. Schenke et al, PRC 102 (2020) 4, 044905 J. Noronha-Hostler et al, PRC 88 (2013) 4, 044916, J. S. Moreland et al, PRC 92 (2015) 1, 011901

Emil Gorm Nielsen (NBI) | July 26th

7 / 12

$\rho(v_2^2, [p_T])$ at low multiplicity

- $\rho(v_2^2, [p_T])$ in Pb–Pb:
 - Slope change around N_{ch} of 100
 - IP-Glasma+MUSIC+UrQMD changes slope @ $N_{ch} \sim 20$
- ✤ Slope change in both AMPT and IP-Glasma+MUSIC+UrQMD
 ⇒ Not unique to CGC?
- No quantitive description of data

• $\rho(v_2^2, [p_T])$ in pp:

- Decreasing trend with $N_{\rm ch}$
- High-multiplicity data consistent with Pb–Pb
- Underestimated by AMPT

Emil Gorm Nielsen (NBI) | July 26th

8 / 10

$\rho(v_2^2, [p_T])$ at low multiplicity

8 / 10

- $\rho(v_2^2, [p_T])$ in Pb–Pb:
 - Slope change around N_{ch} of 100
 - IP-Glasma+MUSIC+UrQMD changes slope @ $N_{ch} \sim 20$
- ✤ Slope change in both AMPT and IP-Glasma+MUSIC+UrQMD
 ⇒ Not unique to CGC?
- No quantitive description of data

• $\rho(v_2^2, [p_T])$ in pp:

- Decreasing trend with $N_{\rm ch}$
- High-multiplicity data consistent with Pb–Pb
- Underestimated by AMPT
- Overestimated by PYTHIA

Emil Gorm Nielsen (NBI) | July 26th

Multiharmonic correlation coefficient

$$\rho(v_2^2, v_3^2, [p_T]) = \frac{\langle v_2^2, v_3^2, [p_T] \rangle - \langle v_2^2 \rangle \langle v_3^2, [p_T] \rangle}{\langle v_3^2, [p_T] \rangle}$$

• Genuine correlation of v_2 , v_3 and $[p_T]$

***** First study in experiment

- Non-zero in the presented centrality range
- $\sim 3\sigma$ effect in 0-40% centrality \bullet
- $\rho(v_2^2, v_3^2, [p_T])$ from IP-Glasma+MUSIC+UrQMD, TRENTo+v-USPhydro and Glauber+MUSIC are very different
- Models especially differ for centrality above 40-50% where opposite signs are seen.
- Surprisingly, well described by AMPT

Emil Gorm Nielsen (NBI) | July 26th

$\langle v_1^2 \rangle - \langle v_3^2 \rangle \langle v_2^2, [p_T] \rangle - \langle [p_T] \rangle \langle v_2^2, v_3^2 \rangle + 2 \langle [p_T] \rangle \langle v_2^2 \rangle \langle v_3^2 \rangle$ $\sqrt{var(v_2^2)}\sqrt{var(v_3^2)}\sqrt{c_k}$

ALI-PREL-491940

- Event-shape engineering with q_2 selection biases identified v_2 larger or smaller than average v_3 less sensitive to q_2 selection
- * The first measurement of centrality dependence of $\rho(v_2^2, [p_T]), \rho(v_3^2, [p_T])$ (in backup material) and $\rho(v_2^2, v_3^2, [p_T])$ in heavyion experiments
- For the first time we see completely different behaviours of IP-Glasma and TRENTo (with p=0) models in flow studies
- * All state-of-the-art Bayesian analyses (with TRENTo-IC), which represent our best understanding on the initial conditions and transport coefficients of the QGP, failed or will fail in describing the presented ALICE data

Emil Gorm Nielsen (NBI) | July 26th

- Event-shape engineering with q_2 selection biases identified v_2 larger or smaller than average v_3 less sensitive to q_2 selection
- * The first measurement of centrality dependence of $\rho(v_2^2, [p_T]), \rho(v_3^2, [p_T])$ (in backup material) and $\rho(v_2^2, v_3^2, [p_T])$ in heavyion experiments
- For the first time we see completely different behaviours of IP-Glasma and TRENTO (with p=0) models in flow studies
- * All state-of-the-art Bayesian analyses (with TRENTo-IC), which represent our best understanding on the initial conditions and transport coefficients of the QGP, failed or will fail in describing the presented ALICE data

Emil Gorm Nielsen (NBI) | July 26th

Thank you for your attention!

Backup

Emil Gorm Nielsen (NBI) | July 26th

Current understanding of initial state

IP-Glasma

✤ IP-Glasma well describes ALICE data with $\eta/s = 0.12$ and temperature dependent ζ/s up to 0.13 at T = 160 MeV

Bayesian analysis (Duke)

Constrain the initial conditions and extract transport coefficients of QGP via $\langle pt \rangle$ and v_n separately.

Emil Gorm Nielsen (NBI) | July 26th

J.E. Bernhard etc, Nature Physics, 15, 1113 (2019)

Current status of initial state models

* "sharp" models: IP-GLASMA and TRENTO 2016

- Nuclecon width ~0.5fm (trento)
- 3 sub-nucleons with size ~0.2fm (IP-Glasma).
- Initial entropy density with Trento
- Only model with realistic pre-equilibrium evolution with longitudinal cooling [Schenke, Shen, Tribedy 2005.14682] [Bass, Bernhard, Moreland 1605.03954]
- ***** "fat" models: TRENTo 2019 and JETSCAPE
 - Trento parametrisation is used for the energy density at tau=0+.
 - No substructure, nucleon width is now $\sim 1 \text{ fm}$.
 - Very smooth profiles

[Bass, Bernhard, Moreland Nature Phys. 15 (2019)] [JETSCAPE Collaboration 2011.01430, 2010.03928]

* "lumpy fat" models: TRENTo 2018 and Trajectum

- Trento parametrisation is the energy density at tau=0+.
- Substructure is included: 4-6 constituents, nucleon width ~0.5fm
- Profiles with some 'old school' lumpiness.

[Bass, Bernhard, Moreland 1808.02106] [Nijs, van der Schee, Gürsoy, Snellings 2010.15130, 2010.15134]

Emil Gorm Nielsen (NBI) | July 26th

- 10

-8 -4 0 4 8

x (fm)

SHARP

13/12

(ffm)

-8 -4 0

x (fm)

PID $v_3(p_T)$ with q_2 selection

 $p_T < 2 \text{ GeV}/c$: mass ordering

- ♦ $p_{\rm T} \sim 2 3$ GeV/*c*: meson-baryon crossing
- * $3 < p_T < 10 \text{ GeV}/c$: particle type dependence $v_3^{\text{baryons}} > v_3^{\text{mesons}}$
- v_3 anti-correlated with q_2
- Flat ratio up to $p_{\rm T} = 8 \text{ GeV}/c$
- Same values for inclusive and PID \rightarrow no dependence on particle species

Emil Gorm Nielsen (NBI) | July 26th

PID $v_2(p_T)$ Xe-Xe vs Pb-Pb: 0-5% centrality

ν₂{2, |Δη|>2} 000000 Xe-Xe Pb-Pb V₂{2, |∆η|>2} p+p 0.05 Xe-Xe Pb-Pb 2

ALI-PREL-336724

 π^{\pm}

Constrain initial geometry and transport coefficients of the QGP

♦ $v_2^{Xe} > v_2^{Pb} \rightarrow$ Nuclear deformation of Xe

Emil Gorm Nielsen (NBI) | July 26th

Identified particle $v_2(p_T)$ in Xe–Xe collisions

\clubsuit No event selection

- * $p_T < 2 \text{ GeV}/c$: mass ordering interplay between radial flow and initial geometry
- ✤ $p_T \sim 2 3 \text{ GeV}/c$: crossing between mesons and baryons
- * $p_T > 3 \text{ GeV}/c$: grouping according to particle type ($v_2^{\text{baryons}} > v_2^{\text{mesons}}$)

Emil Gorm Nielsen (NBI) | July 26th

Identified particle $v_3(p_T)$ in Xe–Xe collisions

• $p_T < 2 \text{ GeV}/c$: mass ordering • $p_{\rm T} \sim 2 - 3 \text{ GeV}/c$: meson-baryon crossing

Emil Gorm Nielsen (NBI) | July 26th

Centrality dependence of $\rho(v_3^2, [p_T])$

Emil Gorm Nielsen (NBI) | July 26th

Centrality dependence of $\rho(v_3^2, [p_T])$

Emil Gorm Nielsen (NBI) | July 26th

• ρ_3 comparison to initial state calculations:

- IP-Glasma with [s] estimator works best •
- Choice of estimator for $[p_T]$ matters \bullet

 \rightarrow S/A has anti-correlation of ϵ_2 and ϵ_3 - leading to negative ρ_3

- Negative values predicted by TRENTo in non-central collisions not \bullet seen in data
- ρ_3 not sensitive to deformation parameter β

Centrality dependence of $\rho(v_3^2, [p_T])$

* ρ_3 Pb–Pb and Xe–Xe results are compatible

- \bullet ρ_3 results are positive and have a modest centrality dependence for the presented centralities
- Comparison to hydro models:
 - Better described by IP-Glasma \bullet
 - TRENTo predicts negative ρ_3 in peripheral collisions which is not seen in data

Emil Gorm Nielsen (NBI) | July 26th

 \bullet ρ_3 comparison to initial state calculations:

- IP-Glasma with [s] estimator works best \bullet
- Choice of estimator for $[p_T]$ matters \bullet

 \rightarrow S/A has anti-correlation of ϵ_2 and ϵ_3 - leading to negative ρ_3

- Negative values predicted by TRENTo in non-central collisions not • seen in data
- ρ_3 not sensitive to deformation parameter β

\diamond Covariance of v_n and $[p_T]$

Emil Gorm Nielsen (NBI) | July 26th

- \diamond Covariance of v_n and $[p_T]$
- * v_2 fluctuations

Emil Gorm Nielsen (NBI) | July 26th

- Covariance of v_n and $[p_T]$
- v_2 fluctuations
- Solution Φ Dynamic fluctuation of $[p_T]$

Emil Gorm Nielsen (NBI) | July 26th

- \diamond Covariance of v_n and $[p_T]$
- v_2 fluctuations
- Solution Φ Dynamic fluctuation of $[p_T]$
- $\rho(v_2^2, [p_T])$

Emil Gorm Nielsen (NBI) | July 26th

Non-flow in low multiplicity region

- MB measurements significantly higher than HM
- Change of slope may be sensitive to non-flow effects

Emil Gorm Nielsen (NBI) | July 26th

ρ_n initial vs final state: Trento-based models

Final and initial state compatible for TRENTo-based models

Emil Gorm Nielsen (NBI) | July 26th

ρ_n initial vs final state: IP-Glasma-based models

Final and initial state compatible for IP-Glasma-based models

Depends on choice of estimator for $[p_T]$

Emil Gorm Nielsen (NBI) | July 26th

Kinematic cuts

Left: ρ_2 mostly insensitive to choice of η for the subevents • Middle: ρ_2 highly sensitive to choice of p_T range Right: ρ_2 highly sensitive to choice of centrality estimation

Emil Gorm Nielsen (NBI) | July 26th

Nuclear deformation

✤ Models:

- Measure v_2 as function of $([p_T] \langle [p_T] \rangle) / (\langle [p_T] \rangle)$ in most central collisions
- Pb–Pb: No deformation \Rightarrow no correlation
- Xe-Xe: v_2 larger in events with smaller $[p_T]$

Emil Gorm Nielsen (NBI) | July 26th

* ALICE

- Pb–Pb and Xe–Xe significantly different
- No significant slope observed
- Xe–Xe best described with $\beta = 0.16$

