

Strategy for high-precision luminosity measurement with the CMS detector at the HL-LHC EPS-HEP 2021 - 26-30 July

F. Romeo on behalf of the CMS Collaboration

The HL-LHC luminosity

- Peak instantaneous luminosity of 5×10³⁴ cm⁻² s⁻¹ (pileup≈140) 7.5×10³⁴ cm⁻² s⁻¹ (pileup≈200)
- Hardware must be designed to operate up to an integrated luminosity of 4000 fb⁻¹

Why high-precision luminosity measurement @ HL-LHC

Luminosity uncertainty will dominate the experimental systematic uncertainty at HL-LHC even with the target 1% precision and will remain significant even when including the expected theoretical uncertainties

From Run2 lumi uncertainty to HL-LHC lumi uncertainty

 $L = \int R(t) dt / \sigma$

Normalization (vdM scan)

Integration	Systematic
	Beam separation le
	Linear orbit drift
	Residual orbit drif
	Transverse nonfact

ength scale -1.3 to -0.40.2 - 0.3+0.2 to +1.00.1 - 0.2-0.6 to +0.40.5 - 0.80.5 - 0.8torization +0.6 to +1.3Normalization Beam-beam deflection +0.4 to +0.60.5Dynamic- β Beam current calibration 0.2 +1 to +3Ghosts and satellites +0.2 to +0.40.1Scan-to-scan variation 0.3 - 0.5Bunch-to-bunch variation 0.1Cross-detector consistency 0.5 - 0.60 to +0.8Background (detector specific) 0.1Out-of-time effects (detector specific) -17 to 00.3 - 0.4Cross-detector stability 0.5 - 0.6Integration 0.3 - 1.5Linearity CMS dead time < 0.1

Phase-2 goal: 0.8%

d

Critical to rely on detectors that exhibit excellent

- Linearity vs instantaneous luminosity, so that normalization through vdM scan valid at low/high PU
- Stability in response, to allow integration over extended data-taking periods
- Redundancy and diversity of the luminosity detector system very important. Target 1% (2%) offline (online) precision! Best Run2 result so far (2016 data): 1.0 ⊕ 0.7 = 1.2% (LUM-17-003) [see Jingyu's poster]

Correction [%]

Uncertainty [%]

Hardware evolution from Run3 to Phase 2

Central paradigm of maximum commonality

- Histogramming module, triggering (BRIL Trigger Board for TEPX & D4R1), readout back-end electronics,
- BRILDAQ (independent from CMS DAQ) for read out and process luminosity histograms, monitoring and calibration data, and run control system

Capabilities of the proposed luminosity systems

Diverse detector technologies and counting methods, orthogonal systematics, redundancy!

Already used in Run 2

- Hadron Forward (HF) calorimeter (3.15 < |eta| < 3.5)
 2 algorithms for luminosity measurement: Tower Occupancy (HFOC) and Transverse Energy sum (HFET)
- Radiation and Environment Monitoring Unified Supervision (REMUS) monitors all around CERN. Radiation Monitoring System for the Environment and Safety (RAMSES) subsystem used for luminosity systematics

Tracker Endcap Pixel Detector (TEPX) [see Ashish's poster]

Disk 4 Ring 1 (D4R1) [see Ashish's poster]

- D4R1 operated exclusively by BRIL
- Higher trigger rate (750+75 kHz) and smaller surface (190 mm²) \rightarrow similar performance as TEPX
- Beam-induced background measurements needs at least 30 empty bunch crossings to decrease albedo and out-of-time particle contribution → only the first bunch in a train or unpaired bunches

Outer tracker (OT)

CMS BRIL

- Outermost barrel layer 6 in the TB2S part is used
- 76 sensor ladders on each end of CMS

- Each ladder containing 12 modules of 2 Si-strip sensors
- The track stub reconstruction detects hit coincidences on the two sensors of the module @ 40 MHz

Fast Beam Conditions Monitor (FBCM) [see Joanna's poster]

- Proposal to locate close to bulkhead (behind disk 4 of TEPX) 8 < r < 30 cm, 277 < |z| < 290 cm
- 4 quarters, 84 silicon-pad (expect 300um, 2.89 mm²) sensors/quarter
- Luminosity measured using zero-counting algorithm
- BIB measurement exploiting info of the time-of-arrival (ToA) and time-over-threshold (ToT) of hits with a sub-ns resolution at the rate of 40 MHz

Muon barrel detector and 40 MHz scouting

- Counting of muon tracks @ L1 useful for excellent linearity and stability during Run2 → use upgraded system for Phase 2
- Hits from the DT (and RPC) detectors (including particles from jet punch-through) will be combined to reconstruct muon track segments (trigger primitives) as part of the L1 muon trigger system → use of BRIL firmware modules → From orbit-integrated (Run 2) to per bunch crossing (Phase 2)
- Scouting system (part or all of the trigger data streams) captures the L1 trigger objects (Barrel/Endcap muon track finder B/EMTF)
- Verification of the functionality of the existing trigger algorithms, as well as development of new algorithms without disturbing data taking with stable trigger algorithms
- 40 MHz demonstrator already tested in Run 2 and it will be extended for Run 3

Summary

- In High-Luminosity era we expect peak instantaneous luminosity of 5×10³⁴ cm⁻² s^{-1¹} (pileup≈140) 7.5×10³⁴ cm⁻² s⁻¹ (pileup≈200) and up to 4000 fb⁻¹
- Luminosity uncertainty will dominate the experimental systematic uncertainty at HL-LHC
 → aim to a precision of 1% (2%) offline (online).
 Best Run2 result (2016) with 1.2% precision (LUM-17-003) shows this is a feasible target.
- Estimation of beam-induced bkg important for data quality (and some new physics searches)
- CMS has a well defined upgrade plan (TDR submitted to LHCC end June) to fulfill these tasks
 - Exploiting redundancy and diversity of Phase 2 CMS detector systems
 - TEPX and BRIL-operated D4R1 with pixel cluster and coincidence counting
 - Strip Tracker OT L6 twofold coincidence counting
 - New dedicated luminometer
 - Fast Beam Conditions Monitor
 - Upgrade well established/demonstrated technology
 - Hadron Forward (HF) calorimeter with 2 algorithms
 - Muon Barrel (DT+RPC) backend
 - 40 MHz trigger scouting systems providing muon information
 - RAMSES
- Required excellent stability and linearity

Backup

Precision Luminosity Measurement from CMS

Absolute luminosity scale measured for individual bunch crossings

van der Meer scans

Obtained relative precision

- 1.6% in 2015 (2.2 fb⁻¹)
- 1.2% in 2016 (36.3 fb⁻¹)

Main sources of uncertainties

- differences between measured beam positions and the ones provided by the LHC
- factorizability of the transverse spatial distributions of proton bunches
- modelling of interactions among protons in the colliding bunches

PLT = Pixel Luminosity Telescope BCM = Beam Conditions Monitor HF = Forward Hadron Calorimeter PCC = Pixel Cluster Counting

BRIL **Pixel barrel** BCM1F PIT DTs And also: • 1.9% in 2017 at √s = 5.02 TeV (302 pb⁻¹) → LUM-19-001

2104.01927, Physics briefings

Central paradigm: maximum commonality

Since conception of BRIL, strengthen the use of common components in data acquisition and analysis of BRIL instrumentation

Common

- + triggering (BRIL Trigger Board: generate unbiased triggers for TEPX & D4R1, BPTX signal to CMS Global Trigger)
- + readout back-end electronics (e.g., use Apollo and Serenity boards for BRIL luminosity systems)
- + histogramming module for all luminometers
- + data acquisition = BRILDAQ
 - + Read out and process luminosity histograms, monitoring and calibration data
 - + Luminosity data processed in ATCA back end with system-on-chip processors
 - + Read out via control network through gigabit Ethernet
 - + subsystems need to give sufficient bandwidth for (small) BRIL data volume
 - + work with DAQ group to define architecture
 - + Injected to BRILDAQ infrastructure
 - + Independent run control system
 - + Database providing all necessary information for physics analyses

Luminometer operation during LHC cycle

Different detectors will have different coverage depending on the agreed safety considerations with the subsystems

