The upgrade of the CMS Electromagnetic Calorimeter for HL-LHC

Dario Soldi on behalf of the CMS collaboration

29th July 2021

The CMS ECAL in a nutshell

- ed Hadron (e.g. Pion) Hadron (e.a. Neutron) The Electromagnetic calorimeter (ECAL) of the CMS experiment: Transverse slice through CMS **fine granularity**: 61200 crystals in the barrel, 14648 in the endcaps; **lead tungstate PbWO**₄: fast decay scintillation light (25 ns), short radiation lenght ($X_0 = 0.89$ cm), small Moliere radius (2.2 cm); Electromagn Calorimeter Calorimeter uperconducting Barrel is read by avalanche photo-diodes (APDs) sensors, vacuum Solenoia phototriodes (VPTs) for the endcaps; Fundamental to detect e/γ : Marco Pieri's talk Preshower **Good di-photon mass resolution for Higgs events**: ~1% Barrel

- Crucial role for the discovery of the Higgs boson in the final states with two photons or four leptons.

Endcap

The challenge of High Lumi

ECAL must maintain its performances during Phase 2, when the pile up will be 5-7 times larger.

- At luminosity of $5 \cdot 10^{34}$ cm²s⁻¹ we get 1 fb⁻¹ in 5.5 hours
- Phase 2 implies:
 - Higher trigger rate (from 100 kHz to 750 kHz)
 - Higher data bandwidth
 - Higher radiation \rightarrow higher noise (APD leakage current) + crystal transparency loss
 - Higher rate of anomalous signals induced by hadrons interacting directly with the APD core ("spikes")
 - trigger latency moves from 3.8 us of phase 1 to 12.5 us of phase 2.

Actions:

- Replacement of the Endcap part of ECAL with a new High Granularity calorimeter. Clemens Lange's talk Reduction of the ECAL operating temperature from 18° to 9° C to mitigate the APD dark current
- Upgrade of the Ecal Barrel Electronics to have: precise timing + spike rejection + single crystal information available @ L1

Dario Soldi

Precise timing in Phase 2

To maintain the reconstruction performance at 140-200 pileup: precise timing in calorimeter is needed

• At 200 pileup the primary vertex reconstruction efficiency is reduced to 30% for $H \rightarrow \gamma\gamma$ decays

The fiducial cross-section sensitivity and H→γγ mass resolution can be almost completely recovered exploiting the ECAL timing information together with the new timing layer;

The new readout chain is specified to deliver the desired time resolution of 30ps for energies > 50 GeV

Legacy vs upgraded on-detector readout

Multi-gain pre-amplifier (MPGA):

- Charge sensitive amplifier
- 3 outputs, gain values: x1, x6 and x12

Multi-channel ADC:

- ADC resolution: 12 bit / gain value
- ADC sampling frequency: 40 MS/s

Front-End Card:

- Data pipeline
- Trigger primitives generation
- Trigger data granularity: 5x5 crystals

Dario Soldi

CATIA ASIC:

- Trans-impedance Amplifier (TIA) architecture
- 2 outputs, gain values: x1 and x10

Lite-DTU ASIC:

- ADC resolution: 12 bit / gain value
- ADC sampling frequency: 160 MS/s
- Selection and compression unit

New Front-End Card:

- Fast rad-hard optical links to stream crystal data off-detector through CERN lpGBT/VL
- Trigger data granularity: crystal level

Legacy vs upgraded on-detector readout

Multi-gain pre-amplifier (MPGA):

- Charge sensitive amplifier
- 3 outputs, gain values: x1, x6 and x12

Multi-channel ADC:

- ADC resolution: 12 bit / gain value
- ADC sampling frequency: 40 MS/s

Front-End Card:

- Data pipeline
- Trigger primitives generation
- Trigger data granularity: 5x5 crystals

Dario Soldi

CATIA ASIC:

- Trans-impedance Amplifier (TIA) architecture
- 2 outputs, gain values: x1 and x10

Lite-DTU ASIC:

- ADC resolution: 12 bit / gain value
- ADC sampling frequency: 160 MS/s
- Selection and compression unit

New Front-End Card:

- Fast rad-hard optical links to stream crystal data off-detector through CERN lpGBT/VL
- Trigger data granularity: crystal level

Legacy vs upgraded on-detector readout

Multi-gain pre-amplifier (MPGA):

- Charge sensitive amplifier
- 3 outputs, gain values: x1, x6 and x12

Multi-channel ADC:

- ADC resolution: 12 bit / gain value
- ADC sampling frequency: 40 MS/s

Front-End Card:

- Data pipeline
- Trigger primitives generation
- Trigger data granularity: 5x5 crystals

Dario Soldi

CATIA ASIC:

- Trans-impedance Amplifier (TIA) architecture
- 2 outputs, gain values: x1 and x10

Lite-DTU ASIC:

- ADC resolution: 12 bit / gain value
- ADC sampling frequency: 160 MS/s
- Selection and compression unit

New Front-End Card:

- Fast rad-hard optical links to stream crystal data off-detector through CERN lpGBT/VL
- Trigger data granularity: crystal level

The Lite Dtu Chip

Two 12-bits ADCs, 160 MS/s data conversion: ENOB @ 50MHz = 10.2 bit

Phase Locked Loop 1.28 GHz clock for the ADC and the data transmission

Lossless data compression

ID tolerance up to 20 kGy **SEU-protected control logic**

Dario Soldi

Lossless data compression

Direct connections between LiTE-DTU and IpGBT e-links

- LiTE-DTU rate: 13-bit words @ 160 MHz \rightarrow 2.08 Gb/s ٠
- lpGBT e-link rate: **1.28 Gb/s** ٠
- LiTE-DTU rate after compression \rightarrow 1.08 Gb/s ٠

Cain	Significant	Sampla	Output
Gain	Significant	Sample	Output
sample	non-zero bits	Classification ^a	(Nbits)
x10	\leq 6 bits	"Baseline" sample	6 bits
x10	>6 bits	"Signal" sample	13 bits (MSB =
x1	any value	"Signal" sample	13 bits (MSB =

- 6 bits corresponds to ~2.4 GeV
- Probability to have > 2.4 GeV (toy Montecarlo):
- ► 7.3 x 10⁻⁵, 1.6 x 10⁻⁴, 5.8 x 10⁻⁴ @ $\eta = 0$, 0.8, 1.4

The data compression assumes that data in the crystals are usually at low energy: the LiteDTU usually delivers baseline signals.

Other LiTE-DTU features

- Look-ahead algorithm: sample saturation check prevents the mixing of samples from different gains in the same APD signal timeframe.
- Two gain1 dynamic windows: 8 or 16 samples
 - If there are N saturated samples at g10, the gain1 is automatically enlarged up to 8 + (N-1) or 16 + (N-1).

- ADC test mode: to send the ADC output without any gain selection or compression;
- **Forcing gain selection:** to transmit data using always the same gain;
- **Downgrade the sampling frequency:** to read data at 80MHz;
- baseline is low but its oscillation is large, going above the baseline threshold.

Dario Soldi

Baseline subtraction: to subtract a fixed value to all the samples to reduce the probability of being above the baseline threshold;

Shift of the ADC values: to divide the ADC values of a factor 2 or 4: for cases of very noisy channels in which the average

EPS2021

CATIA ASIC Performance from Test Beam

- One ECAL tower (25 channels) equipped with CATIA chip connected with 160 MHz commercial ADC;
- Electron beam, energy range: 25 250 GeV;
- The timing and energy resolutions match the requirements;

Energy resolution matches legacy electronics

Time resolution matches targets

LiTE-DTU laboratory tests

Check the ADC performance:

- ENOB scan as a function of the frequency;
- Test performed with external clock generator (jitter < 3 ps) gives an ENOB which fits the expected performance;
- Results with the PLL v0 are already promising;
- We submitted a new LiTE-DTU chip, implementing a new version of PLL, with a reduced jitter;

Integration of CATIA + LiTE DTU

- The first version of the DTU chips have been assembled with the CATIAs on the new Very Front End boards;
- Results from the timing resolution obtained considering only the electronics (no Crystals, no APDs, no shower fluctuations...) match the requirements;
- A test beam with the integrated system as been performed last week results soon;

Single channel timing resolution vs energy

The High-Luminosity upgrades needed for the CMS ECAL calorimeter has been presented:

- Brand new electronics have been designed for the ECAL Barrel:
 - \triangleright will provide a time resolution of ~30 ps to mitigate the PU effects;
 - will provide a new shaping electronics to reject spikes already at the read-out level or L1 trigger
 - single crystal granularity for L1 trigger
- Replace the Endcap with the High Granularity calorimeter;
- Reduced temperature in the Barrel;

First results of CATIA + commercial ADC from the test beam and of the electronic chain CATIA + LiTE-DTU from laboratory tests meet requirements

> Last week the first test beam with the CATIA + LiTE-DTU system has been performed: results will come soon

THANK YOU FOR YOUR ATTENTION

Conclusions

Backup

Features for debugging and resilience implemented in the LiTE-DTU

- ADC test mode: the output of the ADC is sent out without any gain selection or compression; Possibility to study the ADC performances, validate the output data, etc.;
- **Forcing gain selection:** possibility to transmits data using always the same gain;
- **Downgrade the sampling frequency:** gives the possibility to read data at 80MHz;
- **Baseline subtraction:** possibility to subtract a fixed value to all the samples to reduce the probability of being above the baseline threshold;
- Shift of the ADC values: to divide the ADC values of a factor 2 or 4: important in case of very noisy channels in which the average baseline is low but its oscillation is huge, going above the baseline threshold.

Test Setup In Torino

Test Setup In Torino

Dario Soldi

Dario Soldi

Example

