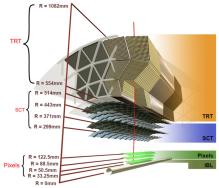
Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector EPS online, 2021

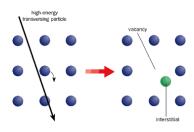
Tomas Dado On behalf of the ATLAS Collaboration


July 27, 2021

Tomas Dado (TU Dortmund)

ATLAS pixel radiation damage

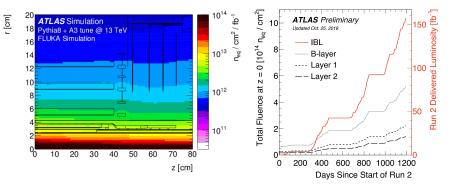
Pixel detectors in ATLAS


- ATLAS Inner Detector: Pixel, SCT and TRT
- Pixel: 4 barrel layers + 3 disks
- Innermost layer: IBL (installed between Run 1 and 2)
- Sensors
 - n⁺-in-n planar sensors
 - IBL planar: 200 µm thick
 - IBL high |z|: n⁺-in-p 3D
 - 230 µm thick
 - Other pixel layers: 250 μm
- Pixel pitch
 - ▶ IBL: 50 × 250µm²
 - Other: $50 \times 400 \mu m^2$

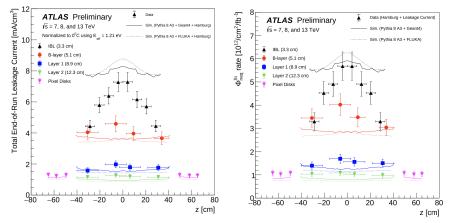
Radiation damage effects

Radiation damage to bulk

- Displacing a silicon atom
- Change in effective doping concentration
- Charge trapping
- Increase in sensor leakage current
- Annealing effects depend on irradiation and temperature history

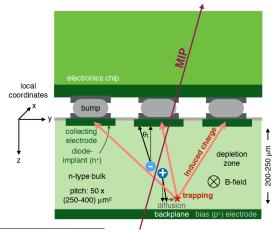


Macroscopic effects


- Change in doping \rightarrow change in depletion voltage, and E profiles
- Charge trapping → reduced signal collection efficiency

Fluence estimation

- 1 MeV n_{eq} cm⁻² per fb⁻¹ estimated with Pythia8 + FLUKA
- Fluence/fb⁻¹ for IBL z = 0: $6.2 \times 10^{12} \text{ n}_{eq}/\text{cm}^2/\text{fb}^{-1}$ (mostly pions)
- Luminosity measured using dedicated sub-detectors


Fluence from leakage current measurement

- Stronger |z| dependence in data than predicted in IBL
- Discrepancy origins: temperature, depletion voltage, modeling of particles, transport/radiation/annealing models

Digitizer scheme

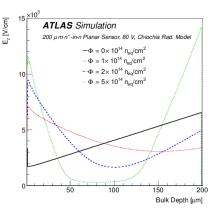
- Reflects the microscopic changes impact on charge collection
- Simplified model¹ due to CPU requirements

¹JINST 14 (2019) P06012

Tomas Dado (TU Dortmund)

Electric field

- Simulated using the default two-trap TCAD model
- Irradiation effects simulated using Chiochia model²
- Field no longer linear with the bulk depth
- Uncertainties of up to 30% (parameter variation)


Annealing effects

- Difficult to incorporate in TCAD, Hamburg model trivial space-charge dependence on depth
- Effective scenario: minor impact (3%) on acceptor trap concentration negligible

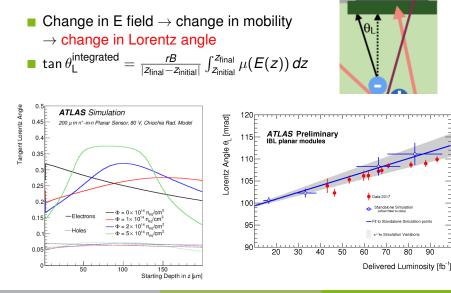
²Nucl. Instrum. Meth. A 568 (2006) 51

Tomas Dado (TU Dortmund)

ATLAS pixel radiation damage

Trapping time, position

- Propagating charges CPU expensive - pre-computed once per geometry
- $t_{\text{collection}}(x_{\text{initial}}) \approx \int_C \frac{ds}{\mu(E)E}$
- Reduces to 1D integral for planar sensor

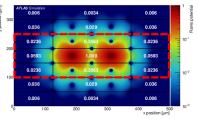

•
$$x_{ ext{trap}}(t_{ ext{trap}}) pprox \int_0^{t_{ ext{trap}}} \mu(E) E \, dt$$

 Trapping time: random exponentially distributed with mean value 1/βΦ

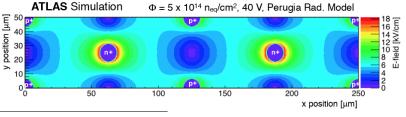
■
$$\beta_e = (4.5 \pm 1.5) \times 10^{-16} \text{cm}^2/\text{ns}, \beta_h = (6.5 \pm 1.5) \times 10^{-16} \text{cm}^2/\text{ns}$$


Lorentz angle

Tomas Dado (TU Dortmund)


Ramo potential

- Signal induced even for trapped charges
- Ramo potential: use TCAD to solve Poisson equation
- Planar: mostly in *z* directions, need *x*, *y* for neighboring sensors



3D sensors

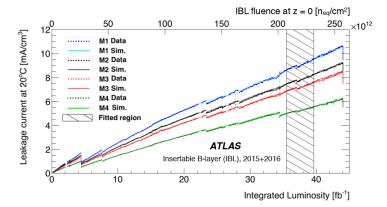
- Charges drift laterally (x y plane)
- Radiation effect simulated using
 Perugia model³ (p-type)
- E field independent of z
- The computation of times more complex - integrate over path
- E field parallel to B → Lorentz angle negligible

Maximum fraction of induced charge per pixel

³IEEE Transactions on Nuclear Science 63 (2016) 2716

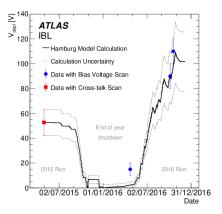
Summary

- Significant impact of irradiation on pixel performance in Run 2
- Presented ATLAS pixel radiation damage simulation
- Combines multiple microscopic models
- Improves prediction wrt observed data
- Radiation damage paper: <u>JINST 14 (2019) P06012</u>
- Leakage current measurement paper: <u>Accepted by JINST</u>
- Operation experience of Pixel by Tobias Bisanz (today at 4pm)


Run 3 and beyond

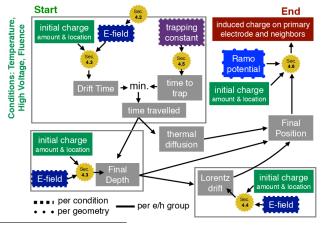
- More irradiation/larger fluences in Run 3 and HL-LHC 10x more
- Some assumptions may need to be revisited
 - Effects of annealing
 - Charge trapping constants

BACK UP


Fluence estimation validation

- Cross-checking the estimated FLUKA fluence with leakage current measurements
- Hamburg model provides leakage curent as a function of fluence

Effective doping concentration


- Using Hamburg model, taking into account irradiation and thermal history
- Predicted impact on depletion volume compared with measurements
 - Using cross-talk between pixels (only before space-charge inversion)
 - Using bias voltage scans

 Uncertainty estimated by varying input parameters and 20% uncertainty on the initial doping concentration

Digitizer scheme full

- Reflects the microscopic changes impact on charge collection
- Simplified model⁴ due to CPU requirements

⁴JINST 14 (2019) P06012

Tomas Dado (TU Dortmund)

Digitizer

The algorithm

- 1. Get magnitude and position of energy deposit from GEANT4
- 2. Get e-h pairs, group them
- 3. Drift electrons and holes
- 4. For each group, calculate fluence-dependent time-to-trap (randomly generated)
- 5. If drift time > trap time \rightarrow trap the charge group (find position)
- 6. Induced charge = difference in weighting (Ramo) potential of the final and initial position
- 7. Also apply the charge on neighboring pixels
- 8. Convert charge to ToT, proceed with reconstruction