

A High Granularity Timing Detector for the ATLAS Phase-II Upgrade

Rachid Mazini

Institute of Physics, Academia Sinica Taiwan

On behalf of the ATLAS High Granularity Timing Detector group

EPS-HEP Conference 2021

European Physical Society conference on high energy physics 2021

Online conference, July 26-30, 2021

Outline

- The ATLAS detector phase II upgrade
- The case for the ATLAS High Granularity Timing Detector
- Description of the HGTD system
 - HGTD layout and properties
 - Low Gain Avalanche Detector technology
- Measurements of LGAD sensors and electronics performances
- HGTD readout
 - ATLAS LGAD Timing Integrated ReadOut Chip (ALTIROC)
 - ALTIROC1 test
- HGTD Module and radiation hardness
- HGTD project status

The ATLAS Detector Phase-II upgrade for HL-LHC

- The ATLAS detector is undergoing a significant upgrade program for all subsystems to operate in challenging HL-LHC conditions
 - * Luminosity up to 7.5×10^{34} cm⁻²s⁻¹, pileup $\langle \mu \rangle \sim 200$, irradiation level TID $\sim 2MGy$
 - L1 trigger rate of 1 MHz. Additional 15 years of operation and maintenance

The case for the HGTD: Pile-up challenge

Main challenge for detectors at the HL-LHC is pile-up

	Energy	Instantaneous $\mathcal L$	Integrated \mathcal{L}	Pileup
Run 2 LHC	13 TeV	$2\times10^{34}~\text{cm}^{-2}\text{s}^{-1}$	$300 \ {\rm fb}^{-1}$	37
HL-LHC (Nominal)	14 TeV	$5\times10^{34}~\text{cm}^{-2}\text{s}^{-1}$	$3000 \ {\rm fb}^{-1}$	140
HL-LHC (Ultimate)	14 TeV	$7.5\times 10^{34}~\text{cm}^{-2}\text{s}^{-1}$	$4000 \ fb^{-1}$	200

scatter je

Stochastic

QCD pileup jet

- With ~7 pileup jets (p_T>30GeV)
- Need to identify if particles or jets come form hard scattering vertex
 - Misidentification affects reconstructed physics objects (efficiency, fakes, resolution...)
- * Vertices spread out with σ_7 =45mm, over ~175 ps
 - With 1.6 vertices/mm \Rightarrow <0.6 mm ITk resolution

The HGTD system

Compact: limited space, maximum thickness: 12.5 cm Radiation hardness: Fluence 2.5x10¹⁵n_{eq}/cm², TID 2 MGy

The HGTD Layout

To satisfy all requirements and constraints: Silicon-based detector:

- * 2 disks/side, 2 sensor layers/disk. Active area $2.4 < |\eta\} < 4.0$
- Total number of channels: 3.6 M
- Sensors operated at -30 °C

Target time resolution: 30-50 ps/track up to 4000 fb⁻¹

HGTD will provide also a luminosity measurement:

hits/ASIC in 2 time windows/bunch-crossing

The LGAD sensors for the HGTD

Low Gain Avalanche Detectors: Originally developed by CNM and RD50

- Standard n-p Si detector with an additional p-type doped laying producing additional charge multiplication
 - 6" and 8" wafers, 50 μm active thickness. B-dopant for highly p-doped multiplicative layer. Considered Ga as well as pursuing additional C-spray.
 - High E field. Internal gain (V_{bias} < 800 V) > 20 before irradiation, and > 8 at the end of lifetime
- Small rise time: ~0.5ns, fast charge collection ~1 ns
- Good timing requires a minimum collected charge of 4 fC/mip/hit
- Hit efficiency > 95% at the end of lifetime

- Several prototypes are being tested:
 - CNM (Spain), HPK (Japan), FBK (Italy), IME (China), NDL (China)

Ι×

Depletion Region

Anode Ring p-type Bulk

Avalanche

Region

LGADs Performance measurements HPK-P2

CNM

LGAD Sensors Laboratory Measurements

- Using ⁹⁰Sr β to measures LGAD dynamic characteristics
- Collected charge and time resolution as a function of bias voltage from various manufacturers.
 - Better performance for sensors with C enriched gain layer. Same charge for lower bias voltage.

R. Mazini IoP/AS Taiwan

LGAD sensors test beam results

Collected charge:

- Collected charge = MPV of the Landau-Gaussian fit of charge distribution
 - CNM B-doped Q = 4.2 fC (V=390 V, 6x10¹⁴ n_{eq}/cm²)

Time resolution:

- HPK n-irradiated at 1.5x10¹⁵ n_{eq}/cm²
 σ = 36 ps (600 V and for Q coll = 22.8 fC)
- Tested sensors that have Q coll >4 fC have a time resolution better than 40 ps at higher bias voltage

LGAD sensors test beam results

Efficiency measurements: ε = Number of tracks with Q > 2fC in central region Total number of tracks in central region Q > 2fC corresponds to the ALTIROC threshold For CNM n-irradiated, Ga doped sensors, at 3x10¹⁵ neq/cm² ε = 99.7% for V = 740 V and Q coll=5.3 fC

2-D efficiency map: CNM with 2x2 arrays, n-irradiated at 6x10¹⁴ n_{eq}/cm²

ATLAS HGTD Test Beam ATLAS HGTD Test Beam Efficiency [bs] ۲ [mm] ۲ [mm] ⁻ 6×10¹⁴ n_{er}/cm², 250 V, -21°C 6×10¹⁴ n_{en}/cm², 250 V, -21°C б 70 0.7 0.5 0.5 60 0.6 0.5 50 0 0 0.4 40 0.3 -0.5 -0.5 0.2 30 0.1 20 0.5 -0.50 -0.5 0.5 X [mm] X [mm] Time resolution has 3ps variations across the pad center.

R. Mazini IoP/AS Taiwan

ATLAS LGAD Timing Integrated ReadOut Chip (ALTIROC)

Signal from each LGAD sensor will be read out using the ALTIROC chip.

- TSMC CMOS 130nm technology. Total of 225 readout channels (15x15)
- Pre-amplifier followed by TOA and TOT (for time-walk correction)
- Threshold for ALTIROC Discriminator 2 fC
- Two prototypes of ALTIROC chips produced and tested:
 - ALTIROC0: 2016
 - four channels in a 2x2 array. Each channel
 200x100 μ m² = Preamplifiers + TOT and CFD
 - ALTIROC1: 2018
 - 25 channels in 5x5 array
 - Preamplifiers, TOT, CFD + digital components
- Ongoing development:
 - ALTIROC2: 2020-2021
 - 225 channels. All functionalities of final ASIC
 - ALTIROC3:
 - Radiation hard version of ALTIROC2

ALTIROC1 with 4pF input capacitance can achieve ~25ps jitter at 4fC input charge

R. Mazini IoP/AS Taiwan

ALTIROC1 measurements in test beam

- Test beam measurement at DESY in 2019 for unirradiated ALTIROC1 modules. 5x5 ALTIROC1 devices with HPK and CNM sensors
 - Fit of TOA variation as a function of the TOT is used to calculate time-walk corrections

- Estimated resolution of 46 ps after time-walk correction and including Landau contribution (25 ps). Estimated jitter contribution: 39 ps
- In test beam configuration, improved DAQ (with FPGA) should improve jitter resolution by 35% achieving ~25 ps target R. Mazini IoP/AS Taiwan EPS-HEP2021. 27 July 2021

HGTD Module

- Module made of 15x30 pads of 1.3x1.3 mm²
- LGADs Bump-bonded to ALTIROCs
 - Hybridization process. 8032 modules, 6.4 m²
- Flex-PCB glued on top
- Flexible tail to outer radius electronics

Peripheral Electronics Board transfer data between the detector modules and DAQ system

Overlap decreases with radius to maintain average Nhits per track 2≳

Radiation Hardness

- High radiation levels in the forward region requires specific optimization for HGTD design to keep stable performance: ATLAS Simulation
 - Each disk is divided into 3 rings:
 - Inner (12-23 cm) replaced every 1000 fb⁻¹
 - Middle (23-47 cm) replaced every 2000 fb⁻¹
 - Outer (47-64 cm) never replaces
 - Limitations: TID 2MGy, fluence 2.5x10¹⁵ MeV/n_{ed}cm⁻²
 - Safety factors: ö.
 - x 1.5 for sensors
 - x 2.25 for readout electronics

30

50

60

20

0.5

10

Radius [cm]

HGTD project status and prospects

Sensors

- Many full size sensors in hand. Many full size sensors in hand
- Active R&D in ATLAS/CMS/RD50 to understand destructive breakdowns of some sensors observed at very high bias voltages and very high fluence
 - Most promising: Carbon diffusion, which allows lower HV operation for the same collected charged. R&D with manufacturer

Electronics

- ALTIROC2 design submitted. 20 8" wafers will be produced
 - sensor/hybridization/module studies
- Module assembly
 - Preparations for first full-size hybrid prototyping. Tests with dummy modules
 - Studies on design on the PEB ongoing, choice of electronics components
- Mechanics
 - Design ongoing for hermetic vessel, cooling plate, outer ring
- Demonstrator
 - Heaters (cooling plates). DAQ with FELIX, ALTIROC2 emulator.
 - Full demonstrator (loading and testing of modules)

R. Mazini IoP/AS Taiwan

Conclusions

- With the HL-LHC challenging conditions, the timing information from ATLAS-HGTD is expected to play a key role in mitigating the impact of pile-up in the forward region.
- LGAD technology and layout for HGTD are optimized to reach a per-track resolution of 30 - 50 ps up to the end of the detector lifetime.
- Irradiated LGAD sensors with different doping profiles and irradiation levels were/are tested in test beams and in laboratories. Required performances are reached for several manufacturers
- The overall design and construction works are progressing. Intense R&D ongoing to improve radiation hardness. Installation is foreseen in 2026-27

R. Mazini IoP/AS Taiwan

Back-up slides

The High Luminosity LHC

Upgrade program for the LHC accelerator aims to extend discovery potential with higher statistics and precision for rare processes

HL-LHC presents definite challenges to the detector and its electronics

- High luminosity: up to 7.5x10³⁴ cm⁻²s⁻¹, requiring a L1 trigger rate of 1 MHz
- * High pile-up conditions with $<\!\!\mu\!\!>\sim 200$ producing very large occupancies
- Increased radiation dose: up to 20x increase, reaching TID ~2MGy for 4000 fb⁻¹
- 15 additional years of operation and subsequent maintenance

R. Mazini IoP/AS Taiwan

The HGTD Layout

Technology Time resolution Time resolution uniformity Min. gain Min. charge Min. hit efficiency Granularity Max. inter-pad gap Max. physical thickness Active thickness Active size Max. inactive edge Radiation tolerance Max. operation temperature on-sensor Max. leakage current per pad Max. bias voltage Max. power density

Silicon Low Gain Avalanche Detector (LGAD) \approx 35 ps (start); \approx 70 ps (end of lifetime) No requirement 20 (start); 8 (end of lifetime) $4 \, \mathrm{fC}$ 95% $1.3 \,\mathrm{mm} \times 1.3 \,\mathrm{mm}$ $100\,\mu m$ $300\,\mu m$ $50\,\mu m$ $39 \text{ mm} \times 19.5 \text{ mm} (30 \times 15 \text{ pads})$ 500 µm $2.5 \times 10^{15} \,\mathrm{n_{eq}} \,\mathrm{cm}^{-2}$, 1.5 MGy -30°C 5µA 800 V $100 \,\mathrm{mW/cm^2}$

LGAD time Resolution

- HL-LHC environment requires fast signal and excellent S/N as well as stability w-r-t irradiations level
- Time resolution less than 70 ps/hit is needed.

$$\sigma_{tot}^{2} = \sigma_{Landau}^{2} + \left(\frac{t_{rise}}{S/N}\right)^{2} + \left(\left[\frac{V_{thr}}{S/t_{rise}}\right]_{RMS}\right)^{2} + \left(\frac{TDC_{bin}}{\sqrt{12}}\right)^{2} + \sigma_{clock}^{2}$$

Jitter Time-walk (negligible)

- Intrinsic Landau contribution from non- uniformities charge deposition is reduced for thin sensors: choice of 50 µm in HGTD. σ_{Landau} < 25ps</p>
- σ_{clock} < 15 ps
 </p>
- Time-walk contribution can be corrected with the Time of Arrival (TOA) and the Time over Threshold (TOT)
 - Negligible with CFD
- Noise jitter dominates at low S/N while σ_{Landau} does at high S/N
- Several LGAD prototypes satisfy time resolution requirements

R. Mazini IoP/AS Taiwan

LGAD sensors tests

- Several LGAD sensors prototypes have been tested
 - Single pad, 2x2, 5x5 and 15x15 pads
- Sensors tests in laboratory
 - Using ⁹⁰Sr β-source or lasers in controlled environment using a climate chamber for irradiated sensors.
 - Custom made HGTD-specific readout boards. Electrical measurement: I-V, C-V, Gain, time-resolution, rise time and interpad gap

- similar setups at different labs some without Sci+PM systems inter-calibrated USC board 3D det USC board 10 det UCSC bo
- Sensors test with beams
 - CERN SPS (120 GeV pions) and DESY (5 GeV electrons), FNAL, SLAC
 - Sensors integrated into a beam telescope providing track position with 3µm resolution

HGTD LGAD sensors test beam setup

- Sensors, inside a cooling volume, are located between 2 arms of aTelescope Mimosa planes to provide track reconstruction
- Oscilloscope records wave-forms to perform analysis
- * Cerenkov Quartz bar and SiPM (σ = 10-40 ps) for independent time reference
- ASIC + sensor testing: ALTIROC chip is used for readout + oscilloscope for debug

R. Mazini IoP/AS Taiwan

LGADs Performance measurements

Manu-	Name	Thickness	Gain layer	С	Gain layer	Gain layer
facturer		[µm]	dopant	implant	depth [µm]	depletion [V]
HPK	HPK-3.1	50	Boron	No	1.6	40
HPK	HPK-3.2	50	Boron	No	2.2	55
FBK	FBK-UFSD3-C	60	Boron	Yes	0.6	20
CNM	CNM-AIDA1/2	50	Boron	No	1.0	45
NDL	NDL-33µm	33	Boron	No	1.0	20
Manu-	Name	Full	V _{BD}	Nominal	Nominal	Max. Array
facturer		depletion [V]	–30 °C [V]	IP [µm]	SE [µm]	Size
HPK	HPK-3.1	50	200	30-95	200-500	15×15
HPK	HPK-3.2	65	70	30-95	200-500	15 imes 15
FBK	FBK-UFSD3-C	25	170	37	200-500	5×5
CNM	CNM-AIDA1/2	50	220/50	37-57	200-500	5×5
NDL	NDL-33µm	35	70	55	450	15 imes 15

Manufacturer	Name	W [μm]	GL [µm]	V _{gl} [V]	Dopant/C	SE [µm]	IP [µm]	Max. Array Size
НРК (НРК-Р2)	P2 (4 splits)	50	2.2	50.5-54.5	B/NO	300-500	30-70	Single,2x2,3x3,5x5, 15x15,15x30
FBK	UFSD 3.2	50	2	35-50	B/YES		28	Single, 2x2
NDL	V3	50	~1	29	B/NO			2x2