ATLAS LAr Calorimeter Commissioning for LHC Run-3

Davide Mungo, on behalf of the ATLAS Liquid Argon Calorimeter Group

Università degli Studi di Milano & INFN Milano

26 July 2021

Liquid Argon calorimeter

Sampling calorimeter with ${\sim}180 \text{k}$ channels

- Four different regions
- Mediums
 - Active: Liquid Argon (~ 88 K)
 - Passive: Lead (EM), Copper (Had), Tungsten (FCAL)
- Longitudinal segmentation

LHC Run3 restart and conditions

- Run3 starting in early 2022
- Pilot run in October 2021
- Luminosity and pileup almost doubled
- ATLAS keeps same L1 and HLT rates \Rightarrow we would need to operate at 270 kHz to keep same E_{T} threshold

	Run2	Run3	Increase
Lumi $[10^{34} \text{cm}^{-2} \text{s}^{-1}]$	1.9	3	∼x1.5
Avg pileup	36	80	~x2
L1 trigger rate [kHz]	100	100	1
HLT trigger rate [kHz]	1	1	1

∜

Upgrade Level1 trigger to maintain the same Run2 performances

Phase-I upgrade performance

Run3 ↔ Super Cell (SC)

- No longitudinal segmentation
- Fixed size in $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$
- Up to 60 cells from 4 layers
- Only 5.4k TT from 180k cells

- Longitudinally segmented as calorimeter
- Increased granularity in Front and Middle to $\Delta \eta \times \Delta \phi = 0.025 \times 0.1$
- Up to 8 cells from 1 layer
- 34k SCs from 180k cells

Use more information at trigger level to better reject background

- Thanks to ~ ×10 more cells
- Using topological information as we do in offline analysis
- Better pileup subtraction with advanced algorithms

New FrontEnd: Baseplane, LSB

Baseplane

- Connect various boards in the Front End Crate (FEC)
- Replaced to operate digital and legacy system concurrently
 - Additional slots for the new LAr Trigger Digitizer Board (LTDB)
 - Additional routing for both systems
 - Crate re-organization
- Installed 114 baseplanes

Layer Sum Board

- Plug-in card for Front End Board,
 6 different types installed
- Provide signals for LTDB by analogue sums of calo cells
- Replaced: we need finer sum segmentation for SCs in the front and middle layers
- Installed 2968 LSBs

New FrontEnd: LTDB

LAr Trigger Digitizer Board: processing and digitizing SC analogue signals

- Custom designed 12 bit ADC at 40 MHz, in 130 nm TSMC technology
 - Least significant bit of the ADC is ~ 150 (300) MeV in Front (Middle) layer
- Processes up to 320 Super Cells
- Provides analogue sums for legacy Trigger Tower boards
- Transmits to LDPB via optical fiber links (8 SCs per fiber at 5.12 Gb/s)
 - Custom serializer (LOCx2) and laser drive (LOCld), using 250 nm SOI process

- 124 LTDBs in total, 7 different flavours
- Required to be operational for HL-LHC too
 - After exchange of power mezzanines

New BackEnd: LDPB

LAr Digital Processing Blade:

- System gets data from LTDB (~25 Tbps, 40 MHz) and transmit to L1 Calo Trigger (~41 Tbps, 40 MHz)
- System composed of 30 Blades, each hosting 4 LAr Trigger prOcessing MEzzanines (LATOMEs) over one LAr Carrier (LArC)
 - LATOME and LArC operated by commercial FPGAs
 - Intel Arria-10 and Xilinx Virtex 7 respectively
- Main goals: reconstruct E_{T} and identify bunch cross
 - Strict latency limit for E_T and pulse phase algorithms (5 to 6 bunch crossing)
- System distributed in 3 ATCA crates

Installation status: Front End

- All crates baseplanes and legacy boards refurbished and installed
- 85% LTDBs are installed and connected (all at CERN)
- Waiting for access, expected finished end July

Installation status: Back End

- All LDPB installed in the 3 ATCA crates
 - 10 LArC per crate
 - LArC are grouped by readout regions
- 85% fiber from LTDB to LATOME connected
 - waiting for LTDB installed on front end
- Monitoring and control system in place, included in ATLAS control
- Parallelized configuration of LTDB in place too

D. Mungo (U. of Milan & INFN MI)

Validation and commissioning (1)

TTB timing correction middle vs back layers

Legacy trigger readout

- \blacksquare Additional extra path for TTB \Rightarrow testing gain and timing at L1
 - Corrections applied, consistent results as before
- Connectivity scan automatised
 - No problems found so far

Main data readout

- FEBs refurbished with LSB ⇒ should have similar calibration coefficients and same noise level as before
 - No change in electronic noise level after refurbishment of the FEBs
 - Calibration runs compared to pre-LS2 calibration set show same results

Validation and commissioning (2)

Digital trigger readout

- Energy and timing of SCs should be similar to legacy TTs
 - Linearity valid up to ~700 GeV for all SCs, much higher than previous TTs (250 GeV)
- Channel pulsing scans to verify SC mapping

Energy computed with LATOME

- Online and Offline algorithm should gave similar results
 - Differences below 1%
 - Automatic processing in place

Conclusions

LAr Digital trigger installation almost finalized despite the pandemic

- \blacksquare Front end close to be fully installed: all baseplanes, LSB, and FEBs refurbished, >80% LTDBs installed
 - Expect to install remaining LTDBs by the end of ~July
- Back end fully installed, with monitoring system too
 - Additional fibers routing to the back end to be performed as well

Validation and commissioning progressing very well

- Main readout path is validated
- Already applied corrections to synchronize legacy and new systems
- Continuously improving stability and robustness
- Expect to keep providing excellent performance during Run-3

On track to have a fully operational readout and digital trigger by the Pilot Run in October and for Run3, thanks to a devoted and overachieving group of scientists!

Physic signlas from LAr cells

- 2.1 mm gap with ~2 kV applied
- Particles interact with the absorber creating secondary particles ⇒ shower
- Secondary particles ionize LAr ⇒ collected by electrodes, drift time ~450 ns,
- Current is read out, amplified and shaped (CR-RC²)
- Signal then sampled and stored in analogue memory on the Front End waiting for L1 trigger decision

Phase I physics motivation

Use shower information as done in offline analysis to improve background rejection

Example 95% efficiency on electrons from $Z \rightarrow ee$ events with Run3 conditions

- assuming Run2 trigger algorithms: to have L1 rate 20 kHz need
 E_T = 28.5 GeV threshold
- Using shower shapes from SCs, lower to $E_{\rm T} = 21 \, {\rm GeV}$ threshold

Moreover, improved L1 EM resolution \Rightarrow substantially sharpen the trigger turn-on curves \Rightarrow reduction offline $E_{\rm T}$ threshold and increase acceptance

Front End Crates

Front End crates contains most of the FE electronics for readout and trigger

- 1524 Front End Boards, each reading 128 channels
- Calibration boards
- Trigger Builder Boards (for TT building)
- From now on also LTDBs

HEC and EMEC Special

EMEC

Digital trigger integration

Signal paths in LTDB

LTDB digital section includes two signal flow paths: the data link and the control (TTC) link.

- data link: SC signals are digitized by the ADC, reorganized and serialized by LOCx2, and transmitted via the MTx over fiber optical links
- control link: the TTC link is responsible for clock distribution, slow control and monitoring; it is composed of the GBTx, GBT-SCA and VTRx
 - ► GBTx interfaces to the back end of the TTC system via VTRx over duplex fiber optical
 - GBTx and GBT-SCA chipset is used to provide clock distribution, slow control and monitoring on the LTDB.

Data flows

