Track and Vertex reconstruction in ATLAS for LHC Run-3 and High-Luminosity phases

Noemi Calace – noemi.calace@cern.ch On behalf of the ATLAS Collaboration

Tracking challenges at LHC

- Tracking is a key ingredient of reconstructing the full event
 → Used in almost every element of reconstruction
- Tracks need to be reconstructed
 - With very high efficiency, with precise track parameters, at very low fake rate, quickly
- Increase in number of interactions per bunch crossing implies an increase in number of charged particles per event
 - In Run-3 each collision is expected to produce up to $O(10^4)$ hits
 - \rightarrow **Complex combinatorial problem** for tracking whose difficulties increase with pile-up
 - It is challenging to maintain high quality of reconstructed tracks under high pile-up
 - High cluster density → incorrect cluster-to-track association
 → incorrect estimation of track parameters
 - Increase of clusters \rightarrow increase in fake contribution
 - CPU for tracking rapidly increases with pile-up

Primary vertex Pile-up removal reconstruction

Jet flavour tagging

Monday, 26 July 2021

EPS-HEP Conference 2021

ATLAS Inner Detector

- Designed to reconstruct charged particles up to $|\eta|{<}2.5$
 - Three different detector technologies:
 - Silicon pixel detectors
 - Insertable B-layer (IBL) added before Run-2 and designed to improve precision and robustness
 - Semiconductor Tracker (SCT): silicon strip detectors
 - Transition Radiation Tracker (TRT): gas-filled straw tubes
- Surrounded by a thin superconducting solenoid providing 2 T axial magnetic field

Monday, 26 July 2021

EPS-HEP Conference 2021

R1150.

R1066

R563

R514

R443

B371

R122. R88.5 R50.5 R33 5

Radius(mm)

Track Reconstruction in ATLAS ATL-PHYS-PUB-2021-012

• Primary Tracking (INSIDE-OUT) → prompt tracks

- Formation of seeds from 3 silicon hits
- Combinatorial Kalman filter extends seeds in search roads and builds track candidates
- Assignment of clusters to competing tracks based on scoring algorithm
 - NN based algorithm to judge if a cluster has to be split among track candidates
- Final fit using a global- $\chi 2$
- Extension to TRT and re-fit to improve momentum resolution and particle identification
- Back-Tracking (OUTSIDE-IN) → particles produced at larger distance from beamline (mainly electrons from photon conversion)
 - Track reconstruction in regions of interest seeded by deposits in EM using only left-over hits from prior passes
 - Segments of TRT hits extended towards the interaction point using same procedure as primary tracking to build track candidates
 - Dedicated ambiguity resolution and final track fit
- Additional tracking passes use left over hits from prior passes
 - $\,\circ\,\,$ Tracklet from muons at $|\eta|{>}2.5$ and short tracks
 - Non-pointing tracks from displaced decays, aka large-radius tracking (LRT) (not in standard reconstruction in Run-2)

Monday, 26 July 2021

EPS-HEP Conference 2021

Software optimisation for Run-3 ATL-PHYS-PUB-2021-012

- Number of changes to the tracking software to ensure that computational performance and size of the output remain sustainable during LHC Run-3 data-taking
 - \rightarrow Best handle is to **abort track reconstruction as early as possible** for low quality candidates to reduce time and resources of down-stream algorithms $_{-100}$
 - Stricter tracking cuts
 - At least 8 hits and $\left|d_{0}\right|<5~mm$
 - Back-tracking and TRT optimization
 - Using RoIs seeded by EM deposits with $E_{\rm T}{>}6~\text{GeV}$
 - Seed and pattern recognition tuning
 - Stricter requirements on seeds, narrower search roads, restriction of number of overlapping seeds
 - Seed confirmation from 4th layer and smaller seed formation regions
 - General optimisation of software implementation
 - Inclusion of ACTS-based vertexing

2×4 improvement (at $\langle \mu \rangle = 90$) in speed is achieved since the beginning of the optimisation process!

Summary of Performance Improvements

- Run-3 reconstruction is over x2 faster with a 25% reduction in the disk space
 - Timing of the pattern recognition reduced by a x4 (!)
 - Significantly **improved scaling with pile-up** \rightarrow capable of running up to high $\langle \mu \rangle$ without major slowdowns
- Allows for the inclusion of LRT by default, while still meeting the targeted CPU and disk goals
 - Previously run separately on only a subset of data → exciting prospects ahead for long-lived particle searches!

- Performance improvements are largely thanks to a **reduction in the fake rate**
 - Number of real tracks expected to scale linearly with µ, while random combinations expected to scale with a higher power
- No significant impact on the reconstruction efficiency
 - \circ <4% (1%) at low (high) p_T

Vertex Reconstruction for Run-3 ATL-PHYS-PUB-2019-015

- ATLAS developed new vertex reconstruction strategy for Run-3 to improve efficiency and pile-up robustness
 - Recommissioning of Adaptive Multi-Vertex Finder and Fitter (AMVF) instead of Iterative Vertex Finder (IVF)
 - Use of Gaussian Track Density Seed Finder
 - Tracks for vertex fitting are associated to seed according to impact parameter significance and constrained to the seed position in z
 - Tracks share weights with multiple vertices, which are fit simultaneously
 - Better overall vertex reconstruction efficiency
 - Improves the already-high efficiency for $t\bar{t}$ and recovers half the inefficiency for VBF $H \rightarrow 4\nu$
 - Less dependence of reconstruction efficiency on pile-up
 - Improved longitudinal separation
 - □ 20% (10%) better resolution for $t\bar{t}$ (VBF H→4 ν)
 - In addition, ACTS-provided implementation of AMVF
 - Brings a 40% reduction in the CPU timing

Monday, 26 July 2021

EPS-HEP Conference 2021

Upgrade of the ID for HL-LHC: ITk

- More challenging data-taking conditions at HL-LHC: $\overset{\underline{\mathbb{E}}}{\underline{\mathbb{L}}}$ $\mathcal{L}=7,5\times10^{34}$ cm⁻² s⁻¹, $\langle\mu\rangle\approx200$, for 4000 fb⁻¹
- ITk (Inner Tracker) is a full replacement of the ATLAS ID
 - "all-silicon" detector, new pixel and strip detectors
- Extended tracking acceptance: up to |η|~4
 - Improved sensitivity and acceptance in VBS, VBF Higgs studies, bbH, H \rightarrow 4l, etc.
 - $\circ~$ Pile-up jet suppression \rightarrow Improved MET resolution
 - Better identification of the hard scatter vertex
 - Improved identification or suppression of b-jets
 - Increased range for lepton reconstruction

<u>Monday, 26 July 2021</u>

- \rightarrow 4 strip **barrel layers** and 6 **end-cap** discs
- \rightarrow 5 pixel **barrel layers** and inclined and vertical **rings**
 - reduced innermost radius: flat layer (inner radius
- of rings) at 34 (33.2) mm [IBL: 33.25 mm]
- $25x100~\mu m^2$ pixels for flat innermost layer and $50x50~\mu m^2$ elsewhere [IBL: $50x250~\mu m^2$]

Tracking Performance with ITk Poster Session: Irina Ene ATL-PHYS-PUB-2021-024

- Excellent tracking performance despite the increased level of pile-up
 - $\circ~$ Tracking efficiency for tracks with p_>1 GeV within the detector acceptance for $t\bar{t}$ with pile-up
 - $|\eta| < 1.4$: ITk detector ($\langle \mu \rangle = 200$) is within 5% to the one of the Run 2 detector ($\langle \mu \rangle = 38$)
 - Very high purity tracks shown by linearity of number of reconstructed tracks as a function of number of interactions: negligible tracking fake rate $(O(10^{-4}))$ in spite of the $\langle \mu \rangle = 200$

Monday, 26 July 2021

Track Parameter Resolutions

Poster Session: Irina Ene ATL-PHYS-PUB-2021-024

- Track parameter resolutions improved wrt current detector, thanks to the comparable radius of the innermost pixel layers and reduced pixel pitch (25×100 or 50×50 µm² for ITk, 50×250 µm² for the IBL)
 - d_0 and z_0 resolutions improved by a x2 and x4, respectively
 - transverse momentum resolution outperforms Run-2
 - better resolution in the bending direction for silicon strip sensors, compared to TRT

Vertex Reconstruction with ITk ATL-PHYS-PUB-2021-024

- Vertex reconstruction relies on **AMVF**, fitting all vertices simultaneously
 - Excellent vertexing performance and robustness against pile-up
 - High vertex reconstruction efficiency and improved longitudinal position resolution wrt ID

Monday, 26 July 2021

Conclusion

- Tracking algorithms need to provide high-quality tracks efficiently with an efficient use of resources
 - ATLAS provided excellent tracking and vertexing performance in Run-2
- Many **improvements** to get ready for the **challenging Run-3 data-taking**
 - Surpassing x2 CPU speedup and 25% disk reduction, even with the added inclusion of LRT by default
- HL-LHC will provide unprecedented challenges in terms of track and vertex reconstruction
 - **Excellent performance** for tracking and vertex reconstruction for the **ITk** wrt the current detector despite the **increase in pile-up**

 Opens up a rich playground for future developments, using what we have learned so far as well as investigating new strategies

Additional Slides

Monday, 26 July 2021

Run-2 vs Run-3 fraction of total CPU requirement

ATL-PHYS-PUB-2021-012

Monday, 26 July 2021

14

Disk space: Run 2 vs Run 3 track reconstruction

ATL-PHYS-PUB-2021-012

Monday, 26 July 2021

IVF vs AMVF

ATL-PHYS-PUB-2019-015

Vertex Reconstruction and Selection Efficiency

Monday, 26 July 2021

Vertex Longitudinal Resolution

ATL-PHYS-PUB-2019-015

Reconstructed Vertices

Alignment of the Inner Detector ^{Eur. Phys. J. C 80 (2020) 1194}

- Determination of detector geometry as accurately as possible and correction for time-dependent movements
 - Based on the minimization of track-hit residuals in a sequence of hierarchical levels
 - from global mechanical assembly structures to local sensors, with increasing numbers of degrees of freedom
 - Operational conditions affect the positions of ID elements
 - pixel detector moves upwards every time the data acquisition is activated, staves of the IBL bow depending on the temperature, while remaining structures are quite stable during LHC fill
 - \rightarrow Automated alignment scheme for the ID
 - Dynamic alignment update throughout each LHC fill calibrating the recorded data
 - every 20 minutes during the first hour of data-taking; every 100 minutes for the rest of the fill

Monday, 26 July 2021

EPS-HEP Conference 2021

20

Tracking in Dense Environment

- In dense environment, multiple tracks get associated with one cluster
 - High-p T signatures (taus, jets)
- In ATLAS, Neural networks have been implemented to resolve those ambiguities
 - ∘ 3 NNs for (x,y) position (1,2 and ≥3 particle hits) + 2x3 for (σ_x, σ_y) uncertainties NNs
- Previous approach improved using algorithm based on Mixture Density Networks (MDN)
 - 9 NNs replaced with 3 MDNs: can estimate both hit position and associated uncertainty simultaneously

(b) Merged pixel cluster

Monday, 26 July 2021

21

Simulation and Track Reconstruction for ITk

- Updated and improved modeling of the Pixel and Strip Detectors in simulation
 - Support structures, services, patch panels in forward region, ...
- Updated description of modules and improved accuracy of digitization model

• Track reconstruction based on Run-2 ID software with requirements updated to ITk characteristics

Requirements	Pseudorapidity interval		
	$ \eta < 2.0$	$2.0 < \eta < 2.6$	$2.6 < \eta < 4.0$
pixel + strip hits	≥ 9	≥ 8	≥ 7
pixel hits	≥ 1	≥ 1	≥ 1
holes	≤ 2	≤ 2	≤ 2
$p_T [MeV]$	> 900	> 400	> 400
$ d_0 $ [mm]	≤ 2.0	≤ 2.0	≤ 10.0
$ z_0 $ [cm]	≤ 20.0	≤ 20.0	≤ 20.0

Monday, 26 July 2021

Hermeticity check for ITk

Poster Session: Irina Ene ATL-PHYS-PUB-2021-024

- Provide hermetic coverage with a minimum of 9 hits for primaries with p_T > 1 GeV and z_{vertex} = [-150, 150] mm
 → Strip+Pixel provide a total of 13 hits for |η| <2.6
 - **11 hits** in the strip barrel/end-cap transition $(|\eta| \sim 1.2)$
 - → The **pixel end-cap system** is designed for of at least **9 hits from** $|\eta| > 2.7$ (except very close to $|\eta| \sim 4$)

Monday, 26 July 2021

Tracking Performance with ITk Poster Session: Irina Ene ATL-PHYS-PUB-2021-024

- Tracking efficiency for different particle types with $p_T=10$ GeV
 - >85% for any kind of prompt and stable charged particles
- Tracking efficiency as a function of pT for tt
 events with pile-up

0

Poster Session: Irina Ene ATL-PHYS-PUB-2021-024

- Tracking efficiency shown for 2, 10 and 100 GeV muons
 - very compatible with the one obtained with the Run 2 detector for $|\eta| < 2.4$
 - 0.5% reduction observed in the barrel for 2 GeV muons
 - expected to be recovered in future optimisations

Monday, 26 July 2021

25

Track Parameter Resolutions

Poster Session: Irina Ene ATL-PHYS-PUB-2021-024

- At low p_{T} dominated by multiple scattering effects
 - $\circ~$ Similar d_0 resolution is achieved between the ITk and the Run-2 detector, thanks to similar innermost radius
 - z₀ resolution improved by up to a x2, thanks to the smaller pixel pitch used in the ITk pixel detector
 - Similar q/p_T resolution, improved thanks to the better precision of strip measurements wrt TRT

Vertex Reconstruction with ITk ATL-PHYS-PUB-2021-024

- Number of interactions and local pile-up density distribution
 - The local pile-up density takes into account event-by-event fluctuations, by computing the number of pileup vertices in a small window (=+/-2 mm) around the hard-scatter vertex / the size of the window.

- Combined vertex selection and reconstruction efficiency is impacted by many effects:
 - Splitting of HS vertex into several reco vertices or merging of pile-up vertices reduced probability of selecting the HS vertex as the one with highest Σp_T^2 ; pileup interactions can genuinely produce a vertex with Σp_T^2 larger than simulated HS process
 - All effects correlated with number of interactions per bunch crossing → reduced selection and reconstruction
 efficiency with increasing pile-up

EPS-HEP Conference 2021

Jet Flavour tagging performance with ITk

- Improvement in low-level algorithms:
 - improved IP3D track categorisation exploiting p_T.dependance of IP resolution in central region + hitcontent in forward region
 - material rejection for secondary vertices for SV1 + JetFitter
- Improved IP3D performance both
 from improved IP + track
 categorisation
- 40% improvement for MV2, driven by IP3D improvement
 - 20% higher light-jet rejection wrt Run-2 at 77% b-jet efficiency working poiny

Monday, 26 July 2021

Poster Session: Irina Ene

ATL-PHYS-PUB-2021-024

Fast Track Reconstruction For ITk

- We have seen CPU reduction thanks to layout optimisation and harder selection cuts for ITk wrt Run2 (based on Run2 tracking software): ATL-PHYS-PUB-2019-014
 - \rightarrow Proven a fully functional software prototypes for fast reconstruction demonstrate that nearly offline quality track reconstruction performance can be reached within much reduced CPU resource requirements

Monday, 26 July 2021

/N_{events} N_{tracl}

Ratio