Badder Marzocchi¹, on behalf of the CMS Collaboration ¹Northeastern University (Boston, US)

26-30 July 2021

EPS-HEP Conference 2021

European Physical Society conference on high energy physics 2021

Online conference/ July 26-30, 2021

- High number of collisions per bunch crossing:
 - Nominal scenario: 5×10^{34} cm⁻²s⁻¹, ~140 PU
 - \circ Ultimate scenario: 7.5x10³⁴ cm⁻²s⁻¹, ~200 PU
- High pile up and radiation damage to detectors:
 - Degradation of energy reconstruction and particle identification

- Timing information can be exploited to reject tracks coming from the pile up → Enable 4D reconstruction of vertices
- Proposed Minimum Ionizing Particle (MIP) Timing Detector (MTD):
 - Provide 30-40 ps time resolution for MIPs (beginning of HL-LHC)

- Impact on the CMS physics:
 - Improve particle isolation, vertex identification (b-tagging, photons, long lived particles) and p_T^{miss} reconstruction
 - Time of flight (TOF) detector for charged particles identification, helping Heavy Ion Physics and Flavor Physics
- Recover the effective background conditions close to Phase-1 operations and maintain excellent performance of CMS detector during HL-LHC

	Signal increase (%)		Expected significance	
Di-Higgs decay	BTL	BTL+ETL	No MTD	MTD
bbbb	13	17	0.88	0.95
bbττ	21	29	1.3	1.6
$bb\gamma\gamma$	13	17	1.7	1.9
bbWW			0.53	0.58
bbZZ			0.38	0.42
Combined			2.4	2.7

- Split into two main sub-systems:
 - Barrel Timing Layer (BTL)
 - Endcap Timing layer (ETL)
- MTD is required to last throughout the HL-LHC era (~3000/fb)
- **BTL and ETL will experience differing radiation dose through their lifetime** (FLUKA estimates):

- Different technologies must be chosen:
 - \circ $\hfill BTL$: LYSO:Ce crystal bars coupled to SiPM readout
 - ETL : Si with internal gate (LGAD)

Barrel Timing Layer

- → Thin (~40 mm), cylindrical layer housed in the Tracker/ECAL interface
- → Sensor technology: LYSO:Ce crystal scintillators read by SiPMs at both ends
- → Read out by a dedicated ASIC, TOFHIR (Time-of-flight, High Rate) chip which delivers precision timing information
- → Nominal operating temperature -45°C to limit the noise induced time jitter

- Total active area of 38 m²
- \Box Z = 5.2 m, R = 1148 mm and $|\eta| < 1.48$
- Total power requirement of ~30 kW
 -35°C with CO₂ and -10°C with
 - -35°C with CO₂ and -10°C with thermo-electric cooler (TEC)

LYSO:Ce:

- □ High density (7.1 g/cm3): most probable value of energy deposit by a MIP ~ 0.86 MeV/mm
- □ High light yield (~ 40000 photons/ MeV)
- □ Fast scintillation rise time (< 100 ps)
- □ Short decay time (~40 ns)
- Non-hygroscopic

SiPMs:

- Compact, robust and insensitive to magnetic fields
- Photo-detection efficiency (PDE): 20-40%, with optimal cell size of 15 µm
- Good radiation tolerance

• Crystals:

- **Dimension:** \sim **3 x 3 x 57 mm**³ with η -dependent thickness
- Scintillation light at 420 nm wavelength, matching SiPMs sensitivity
- \circ Very high radiation tolerance
 - \rightarrow verified with 24 GeV protons fluence of 2x10¹³ cm⁻²

• Challenges:

- → Increase of dark count rate (DCR) with radiation damage and temperature
- → Linear drift of breakdown voltage with radiation

• Solutions:

- Dedicated noise cancellation circuit in the ASIC (TOFHIR)
- Annealing the SiPMs to about 40°C during shutdown
- Use thermoelectric coolers (TECs) to reduce SiPMs operating temperature

→ Performed at Fermilab Test Beam Facility (FTBF), using 120 GeV protons

Setup:

- Trigger based on a 10 cm² scintillation counter
- Silicon tracker telescope spatial information (X-Y)
- □ Micro Channel Plate (MCP) PMT for time reference
- LYSO:Ce + SiPMs (different prototypes) at 25°C, with ad-hoc read out electronics

JINST: 10.1088/1748-0221/16/07/P07023

Performance

Summary

- Precision time measurements of MIP particles:
 - Help mitigating pileup during HL-LHC data taking
 - Improve particle isolation, vertex identification, p_T^{miss} reconstruction and time of flight measurement
- Target time resolution of 30 ps has been achieved in test beam characterization of the current BTL sensor technology: LYSO:Ce readout by SiPMs
- Prototype testing ongoing :
 - Optimize end of life (end of HL-LHC operation) performance of BTL sensor modules with irradiated SiPMs, coupled to thermoelectric coolers
 - Test ASIC chip (TOFHIR) and readout unit

BACKUP

$ \eta $ region	0–0.7	0.7–1.1	1.1–1.48
Readout unit ID within tray	1–2	3–4	5–6
Crystal thickness, t [mm]	3.75	3.0	2.4
$\langle t_{\rm slant} \rangle$ [mm]	4.0	4.3	4.6
SiPM active area [mm ²]	11.2	9.0	7.2
$\langle \Phi_{ m neq}^{ m tot}(3000~{ m fb}^{-1}) angle~[m cm^{-2}]$	$1.65 imes 10^{14}$	1.75×10^{14}	$1.85 imes10^{14}$

		19		(d)
	Module	RU	Tray	Total
Channels (SiPMs)	32	768	4608	331776
Crystals	16	384	2304	165888
ASICs	1	24	144	10368
Modules	-	24	144	10368
Readout units (RU)	-	-	6	432
Trays	-	-	-	72

LYSO:Ce crystal parameter	Specification	Spread (rms)	
Light output / end	> 6000 photons/MeV	< 5%	
LY(10ns)/LY(200ns)	> 20 %	< 3%	
LY(200ns)/LY(2000ns)	> 95 %	< 3%	
Decay time	< 43 ns	< 3%	
Rise time	< 200 ps	< 3%	
Density	$> 7.1 { m g/cm^3}$	< 2%	
Refractive index	1.82	-	
Radiation tolerance			
Loss of light output	< 5%	< 5%	
Induced absorption coeff., μ_{ind}	$< 3 { m m}^{-1}$	< 5%	
Dimensions	Specification	Tolerance	
Length [mm]	57.0	+0.00/-0.03	
Width [mm]	3.12	+0.00/-0.03	
Height [mm]	3.75 / 3.0 / 2.4	+0.00/-0.03	
Surface polishing	< 15 nm		

SiPMs

SiPM parameter	Specification	FBK-NUV-HD	HPK-S12572	HPK-HDR2
Active area	—	$\sim 9 \text{ mm}^2$	$\sim 9 \ \mathrm{mm^2}$	$\sim 9 \text{ mm}^2$
Cell pitch	$< 20 \ \mu m$	15 μm	15 µm	15 µm
Cell recovery time	< 10 ns	7 ns	8.5 ns	< 10 ns
Capacitance	< 600 pF	530 pF	295 pF	585 pF
Number of cells	> 20k	$\sim 40 { m k}$	$\sim 40 { m k}$	$\sim 40 { m k}$
V _{br} (-30 °C)		34.2 V	63.0 V	35.8 V
dV _{br} /dT	· _ ·	41 mV/°C	59 mV/ °C	37 mV/ °C
$\delta V_{\rm br} / 10^{13} n_{\rm eq} / {\rm cm}^2$	$\leq 0.2 \text{ V}$	< 0.1 V	0.2 V	< 0.1 V
DCR-T coefficient	-	1.76	1.90	1.79
ENF	< 1.1	< 1.05	1.07	< 1.05
Parameters after 3000 fb ⁻¹				
Optimal OV	> 1V	1.6 V	1.5 V	1.2 V
PDE	-	15%	13%	23%
Current/device	·	1.32 mA	0.77 mA	1.30 mA
Static power consumption	$\leq 50 \text{ mW}$	50 mW	50 mW	50 mW
Gain	$\geq 1.3 imes 10^5$	$2.1 imes 10^{5}$	$1.45 imes 10^{5}$	1.55×10^{5}
DCR/SiPM	—	42 GHz	37 GHz	55 GHz
PDE/\sqrt{DCR}	≥ 2.0	2.3	2.1	3.1

- TOFHIR (Time-of-flight, High Rate) ASIC chip:
 - Discrimination of the leading edges
 - Time measurement with a TDC
 - 6 ASICs are mounted on a front end board
- 4 front-end boards plugged into a Concentrator Card:
 - Provide low voltage, bias voltage
 - 3 lpGBTs transfer data and control signals
- The ASICs, FE, CC, and associated power supplies constitute the RU, which supports 768 SiPMs