Detector Challenges of the strong-field QED experiment LUXE at the European XFEL

Oleksandr Borysov on behalf of LUXE

EPS-HEP 2021 Hamburg, July 26, 2021

Outline

- Introduction
- LUXE physics observables
- Design of experimental setup at European XFEL
- Summary

LUXE experiment

- new experiment proposed at DESY and Eu.XFEL
- collisions of XFEL electron beam and highpower LASER

Vacuum inside strong field

QED: most well-tested theory in physics → based on perturbative calculations

Talk N. Tal Hod

• LUXE will study non-perturbative and non-linear QED phenomena in the strong-field regime

Vacuum boils if the field large enough to create real pairs:

* LUXE CDR: <u>arXiv:2102.02032</u>
* LUXE website: <u>https://luxe.desy.de</u> 3

LUXE: Physics processes

Non-linear Compton Scattering:

Observables:

- Shift of first kinematic edge;
- Position of other kinematic edges;
- Intensity of nγ scattering.

Pair production:

non-linear Breit-Wheeler and trident

 $e^- + n \gamma_L \rightarrow e^- + e^+ + e^-$

- Three methods for generating incident photon:
 - Compton photons inside same laser pulse => largest rate
 - Bremsstrahlung photons produced upstream => highest E
 - Inverse Compton scattering upstream (E=9 GeV)

Luxe setup

European XFEL electron beam:

- Energy 16.5 GeV (possible 10 GeV, 14 GeV);
- Luxe uses one out of 2700 bunches per train;
- Repetition rate 10 Hz;
- Normalized emittance 1.4 mm mrad;

Laser:

- Laser wavelength = 800.00 nm (1.5498 eV); •
- Repetition rate ~1 Hz;
- Power:
 - Phase 0: 40 TW, $(1.3 \times 10^{20} \text{ W/cm}^2, \xi = 7.9);$
 - Phase 1: 350 TW, $(1.2 \times 10^{21} \text{ W/cm}^2, \xi = 23.6)$;

Luxe setup conceptually contains two detector subsystem:

- Electron positron spectrometer
- Photon detection system

Positron Detection

Study e+e- pair production

0.15

0.1

0.05

6

8

10 12

- electron-laser mode: 10⁻²-10⁴ e⁺e⁻ pairs
- gamma-laser mode: 10⁻²-1 e⁺e⁻ pairs

Spectrometer:

- Magnet: 1 T 1.5 T of ~1 m;
- 4 layers of silicon pixel detectors
- Compact electromagnetic calorimeter

18

16

-laser: 8

14

γ-laser: ξ____= 3.11

= 5.12

Tracker

- ALPIDE silicon pixel sensors: 15 x 30 mm²;
- Sensors developed for upgrade of ALICE Inner Tracking System (ITS);
- Pixel size: 27 x 29 μ m², spatial resolution ~5 μ m;
- Good performance under irradiation able to tolerate an ionization dose of up to 2.7 Mrad.

Performance in MC simulation

- Four layers of two ITS staves
- Energy resolution < 1%, independent of energy.
- Background: <0.1 particle per BX crossing

Electromagnetic Calorimeter

- Ultra compact ECal ~ 550 x 55 x 90 mm³
- Developed by FCAL collaboration;
- Sampling calorimeter: 20 layers of 3.5 mm thick tungsten absorber plates (20 X0)
- Silicon or GaAs sensors (5x5 mm2 pads, 320 (500) µm thick), installed in 1mm gap between absorbers;
- Small Molière radius, high spatial resolution of local energy deposits
- Readout via dedicated FLAME ASIC (developed in FCAL).

Performance in MC simulation

- Energy resolution ~19%;
- Single particle position resolution ~0.8 mm at 10GeV;
- Complementary measurement of positron energy spectra;
- Low energy distributed background rejection.

Special algorithm for high multiplicity events

capable of reconstructing spectra and number of particles based on distribution of deposited energy

8

Electron Detection

- Expected event rate: up to 10⁹ electrons;
- Chosen technology:
 - Scintillator screen,
 - Cherenkov gas detector.

Scintillator Screen

- Technology used by AWAKE experiment at CERN;
- High resolution CMOS camera takes pictures of scintillation screen as it emits the light;
- Scintillator: Tb-Doped Gadolinium Oxysulfide • (GadOx) screen;
- Radiation hard (up to 10 MGy). •

Performance

- Signal/background ~100;
- Position resolution <0.5 mm (~50 MeV);
- Sufficiently high dynamic range (40dB).

Magnet and scintillation screen attached to the widow of the vacuum chamber in AWAKE experiment

AWAKE Coll., Nature 561, 363-367 (2018) https://www.nature.com/articles/s41586-018-0485-4

Cherenkov Detector

- Gaseous (Ar) Cherenkov detector;
- Initially developed for ILC polarimeter;
- Low refractive index gas (Ar), optical filter and optimized gas volume to reduce light yield;
- Fine segmentation to resolve kinematic edges in Compton spectra
- Not sensitive to electrons <20 MeV and photon background;
- Signal/background >1000

Kinematic edge reconstruction in

Photon Detection System

High number of photon:

- up to 10⁹ photons;
- summing up to TeV energies.

Three technologies:

- Tungsten convertor target (10 μ m) generates 10⁴ 10⁵ electron/positron pairs;
- Spectrometer with LANEX scintillator screens coupled with photo cameras (implementation is similar to electron spectrometer):
 - Measure energy spectrum and flux.
- Gamma profiler made of sapphire strip sensors:
 - Measure transverse profile of the beam.
- Backscattering calorimeter:
 - Measure flux.

Gamma profiler

For linearly polarized laser the asymmetry in transverse profile of photon beam depends on laser intensity (ξ).

- Two sapphire strip detectors placed on a table movable with micron precision in both directions perpendicular to beam.
- 2 sensors 2 × 2 cm² (100 μ m thickness) with 100 μ m strip pitch
- very radiation hard material (up to 10 MGy)
- 5% precision in laser intensity reconstruction.

11

Photon Flux Monitor

- Measure energy flow of particles back-scattered from the photon beam dump.
- Optimization of the design:
 - Reduce radiation load to provide reasonable lifetime
 - Measure sufficient fraction of the energy of the back scattering particles to be sensitive to the direct photon flux variation

Design:

- 8 lead glass blocks, 3.8 × 3.8 × 45 cm³
- Placed on cylinder surface with R = 120 mm.

Performance in simulation:

- Almost linear dependence of the deposited energy and the number of incident photons.
- Estimated uncertainty is 3-10%

For $\xi > 1$, Ny > 10⁸ / BX

12

Summary

- Luxe experiment presents an exciting opportunity to explore QED in new regime using European XFEL and high power laser
- Designed detector systems will allow LUXE to achieve physics goals in experimental measurements
- The design of the experiment provide its operation without interference with main EU.XFEL program
- Luxe conceptual design report received positive DESY Physics Review Committee feedback with strong recommendation to proceed with Technical Design Report
- Goal is installation in 2024 during extended shutdown planned for European XFEL

Backup

LUXE participants

