# Measurements of the production cross sections with the ATLAS detector at the LHC

# Federica Fabbri 2013 behalf of the ATLAS Collaboration EPS-HEP2021, Virtual Edition







## Why are we still measuring tt?

Recently, several measurements of differential and inclusive tt cross sections have been performed in ATLAS:

Including challenging final state (all-hadronic)

Exploiting new datasets (5 TeV measurements)

Reaching new level of precision (I+jets boosted, dilepton)



These measurements can be used to:

- Assess current level of understanding of the SM
- Perform studies to improve MC tuning and systematic uncertainty definitions
- Provide inputs to the gluon PDF
- Extract  $m_t$  or/and  $\alpha_s$
- Set limits on the existence of new physics.

<sup>26.07.21</sup> 

#### Inclusive measurements of $\sigma(tt)$ :

- 5 TeV dilepton measurement: ATLAS-CONF-2021-003
- I+jets inclusive measurement: Phys. Lett. B 810 (2020) 135797



# σ(tt): dilepton @5 TeV

- $\sigma$  extracted using events in  $\mu\mu$ , ee and  $e\mu$  channels
- Fit performed on the N-btag distribution for the eµ channel
- Fit including also  $m_u$  information for  $\mu\mu$ , ee channels, to constrain also Z+jets background.







- σ extracted at the same time with a parameter sensitive to the b-tagging efficiency
  - Limit the impact of the related uncertainty (0.2%)
- No requirements applied on the number of jets
- Very small related uncertainties (0.03%)

26.07.21

## σ(tt): dilepton @5 TeV

#### <u>Result:</u>



26.07.21

F.Fabbri - EPS2021

5 CONF-2021-0

# **σ(tt): l+jets @13 TeV**

Profile likelihood fit to 3 distributions in 3 SR categorized based on the number of jets and b-jets.

#### σ(tt)=830±0.4(stat.)±36(syst.)±14(lumi.)pb (4.6%)

SM:  $\sigma_{_{NNLO}}(\bar{tt}) = 832 \pm 40.3 \text{ pb} (5.4\%)$ 

- The dominant backgrounds are single top, W+jets and multijet
- Dominant systematic uncertainties: hadronization/showering of the signal and jet reconstruction uncertainties.

Excellent agreement with NNLO+NNLL prediction and with the ATLAS dilepton measurement @13 TeV



Phys. Lett. B 810 (2020) 135797

#### Differential measurements of $\sigma(tt)$ :

- All hadronic measurement @13 TeV: JHEP 01 (2021) 033
- I+jets measurement @13 TeV (resolved + boosted):Eur. Phys. J. C 79 (2019) 1028
- Dilepton measurement @13 TeV: Eur. Phys. J. C 80 (2020) 528

I+jets boosted measurement @13 TeV: ATLAS-CONF-2021-031

## dσ(tt): all-hadronic @13 TeV

#### **Event selection:**

- At least 6 jets (==2 b-jets)
- Exactly 0 lepton
- Kinematic requirements on system reconstruction

#### $d\sigma(t\bar{t})$ measurement:

Unfolding to the particle and parton level

Reconstruct the tt system minimising of the  $\chi^2$ :

$$\chi^{2} = \frac{(m_{b_{1}j_{1}j_{2}} - m_{b_{2}j_{3}j_{4}})^{2}}{\sigma_{t}^{2}} + \frac{(m_{j_{1}j_{2}} - m_{W})^{2}}{\sigma_{W}^{2}} + \frac{(m_{j_{3}j_{4}} - m_{W})^{2}}{\sigma_{W}^{2}}$$

- A key aspect of the analysis is the separation of the signal and the multi-jet background.
  - Employed a data-driven method
  - Cut on the  $\chi^2$  result



26.07.21

8

## dσ(tt): all-hadronic @13 TeV

- $d\sigma(t\bar{t})$  as a function of the top quarks and  $t\bar{t}$ system kinematic
- Included many variables sensitive to additional radiations
- Including double differential spectra



#### **Parton level**



- Dominant uncertainties from signal showering modeling, multijet background estimate and jet reconstruction.
- Good agreement with NLO+PS generator on angular variables, p<sub>τ</sub> of the leading top quark and tt system.

## dσ(tt): dilepton @13 TeV



- Measured events in the eµ channel
  - Similar to the 5 TeV strategy, performing the fit in every bin
- Both inclusive and differential measurements performed:
  - Most precise inclusive measurement (2.4%)
  - dσ(tt) measured as a function of the several kinematic distributions of the leptons



26.07.21

F.Fabbri - EPS2021

10

## dσ(tt): I+jets @13 TeV (resolved)

Data PWG+P 2

1.8

1.6

1.4

1.2

0.8 0.6

0.4

ATLAS

√s = 13 TeV, 36.1 fb<sup>-1</sup>

Fiducial phase-space

Absolute cross-section



- At least 4j (> = 2b)
- Exactly 1 lepton (e/mu)

#### **Analysis strategy:**

- Reconstruction of the tt system
- Unfolding to parton and particle level
- Avoiding overlap with the boosted topology



Good agreement between several predictions and NLO+PS generators prediction, especially on single differential measurements. Eur. Phys. J. C 80 (2020) 528 26.07.21

F.Fabbri - EPS2021

Resolved

Stat. unc.

Boosted

Stat. unc. Stat.+Syst. unc.

Stat.+Syst. unc.

## dσ(tt): l+jets @13 TeV (boosted)

**NEW!!** 

#### **Event selection**

- At least 1 lepton (e/μ)
- At least 1 reclustered(R=1.0) jet ( $p_T > 355$  GeV) Top jet mass =  $\sum_i (E_i)^2 - (p_i)^2$  (i = jets R=0.4)
- At least 2 b-jets, cut on m(lb) and  $E_T^{miss}$

#### Analysis strategy:

- Employ a parameter sensitive to the top mass to reduce the JET uncertainties (JSF)
- Assume the data and MC top jet mass differs due to the a multiplicative difference on the energy of R=0.4 jets.





 Calibration line obtained by shifting JSF and register the effect on jet mass
 Excellent agreement observed between MC and data

 $JSF_{data} = 1.00035 \pm 0.00087$ 

F.Fabbri - EPS2021

12

ATLAS-CONF-2021-031

## dσ(tt): l+jets @13 TeV (boosted)

#### Systematic uncertainty evaluation:

The JSF technique brings a significant improvement on the total uncertainty: **from 6% to 4.3% on the inclusive measurement**.

- Only Jet related uncertainties significantly reduced
   4.2% → 0.67%
- Modelling uncertainties slightly affected
- Pileup uncertainty increased

26.07.21

- Lumi, bkg and other detector unc unchanged
- Include an uncertainty on top jet mass (1%)
- Include the statistical uncertainty on JSF





- Result unfolded to particle level
  - Several checks on the validity of the unfolding technique
- System reconstructed with the pseudo-top algorithm
- Measured kinematic observables of the top quark, tt system and additional radiation

ATLAS-CONF-2021-031

# dσ(tt): l+jets @13 TeV (boosted)

- Inclusive fiducial xs overestimated by several NLO+PS predictions, as observed also in previous boosted measurements from ATLAS and CMS
- Fiducial xs agrees significantly better with NLO+PS prediction reweighted to NNLO(QCD)+NLO(EW) @ parton-level





- Good agreement in shape observed between single differential distributions and several NLO+PS predictions
- Measurement used to extract limit on EFT coupling (see P. Berta talk)
- More details in J. Jamieson Poster!!

26.07.21

F.Fabbri - EPS2021

### Conclusions

- Presented most recent inclusive and differential measurements of tt production performed by ATLAS :
  - Differential measurements performed in all channels I+jets (resolved and boosted topologies), all-hadronic and dilepton.
  - As a function of many observables of tt, jets and leptons kinematics, including double differential distributions, at particle and parton level.
  - Presented the first ATLAS measurement at 5 TeV.
  - Showed new techniques that can really improve the precision of the measurements, with the boosted topology reaching the resolved one.
  - No significant differences with the SM have been observed
    - Some tension observed with the NLO predictions, in particular on double-differential distributions and variables related to the top p<sub>T</sub>.
- Differential and Inclusive measurements are used to extract limits on new physics (P. Berta)

# Thank you for your attention!

#### $\sigma(t\bar{t})$ : I+jets @13 TeV, systematic

| Category                         | $rac{\Delta \sigma_{	ext{fid}}}{\sigma_{	ext{fid}}}$ [%] | $rac{\Delta\sigma_{ m inc}}{\sigma_{ m inc}}$ [%] |  |
|----------------------------------|-----------------------------------------------------------|----------------------------------------------------|--|
| Signal modelling                 |                                                           |                                                    |  |
| $t\bar{t}$ shower/hadronisation  | ±2.8                                                      | ±2.9                                               |  |
| $t\bar{t}$ scale variations      | $\pm 1.4$                                                 | $\pm 2.0$                                          |  |
| Top $p_{\rm T}$ NNLO reweighting | $\pm 0.4$                                                 | ±1.1                                               |  |
| $t\bar{t} h_{damp}$              | ±1.5                                                      | ±1.4                                               |  |
| <i>tī</i> PDF                    | ±1.4                                                      | ±1.5                                               |  |
| Background modelling             |                                                           |                                                    |  |
| MC background modelling          | ±1.8                                                      | ±2.0                                               |  |
| Multijet background              | $\pm 0.8$                                                 | ±0.6                                               |  |
| Detector modelling               |                                                           |                                                    |  |
| Jet reconstruction               | ±2.5                                                      | ±2.6                                               |  |
| Luminosity                       | ±1.7                                                      | ±1.7                                               |  |
| Flavour tagging                  | $\pm 1.2$                                                 | ±1.3                                               |  |
| $E_{\rm T}^{\rm miss}$ + pile-up | ±0.3                                                      | ±0.3                                               |  |
| Muon reconstruction              | ±0.6                                                      | ±0.5                                               |  |
| Electron reconstruction          | ±0.7                                                      | ±0.6                                               |  |
| Simulation stat. uncertainty     | ±0.6                                                      | ±0.7                                               |  |
| Total systematic uncertainty     | ±4.3                                                      | ±4.6                                               |  |
| Data statistical uncertainty     | $\pm 0.05$                                                | ±0.05                                              |  |
|                                  |                                                           |                                                    |  |



Phys. Lett. B 810 (2020) 135797

#### σ(tt): l+jets boosted @13 TeV, systematic

| Source                           | Uncertainty [%]  | Uncertainty [%] (no JSF) |
|----------------------------------|------------------|--------------------------|
| Statistical (data)               | ±0.4             | ±0.4                     |
| JSF statistical (data)           | ±0.4             |                          |
| Statistical (MC)                 | ±0.2             | ±0.1                     |
| Hard scatter                     | ±0.5             | ±0.8                     |
| Hadronisation                    | ±2.0             | ±1.8                     |
| Radiation (IFSR + $h_{damp}$ )   | $^{+1.0}_{-1.6}$ | +1.4<br>-2.3             |
| PDF                              | ±0.1             | ±0.1                     |
| Top-quark mass                   | +0.8<br>-1.1     | ±0.1                     |
| Jets                             | ±0.7             | ±4.2                     |
| <i>b</i> -tagging                | ±2.4             | ±2.4                     |
| Leptons                          | ±0.8             | ±0.8                     |
| $E_{\mathrm{T}}^{\mathrm{miss}}$ | ±0.1             | ±0.1                     |
| Pileup                           | ±0.4             | ±0.0                     |
| Luminosity                       | ±1.8             | ±1.8                     |
| Backgrounds                      | ±0.7             | ±0.6                     |
| Total systematics                | +4.1             | +5.8                     |
|                                  | -4.3             | -6.0                     |
| Total                            | +4.1<br>-4.3     | +5.8<br>-6.0             |