

Inclusive and differential

cross-section measurements at CMS

avier Fernandez, U. Oviedo-ICTEA (5p

on behalf of the CMS collaboration

European Physical Society Conference on High Energy Physics (EPS-HEP) 26 July 2021, DESY-Univ. Hamburg

Experimental references:

• CMS:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

• Summary and combinations of LHC Top results: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWGSummaryPlots

Brief summary of <u>ONLY latest</u> results on 5.02 and 13 TeV LHC data.

UNIVERSIDAD DE OVIEDO

The challenges

Variable of interest 1

Theoretical challenges:

- enter through unfolding to parton &

- parton shower & underlying event

The <u>full</u> picture

UNIVERSIDAD DE OVIEDO

The totally <u>full</u> picture

Inclusive tf cross section [pb]

The <u>detailed</u> 13TeV picture

CMS Preliminary σ, summary, vs = 13 TeV Jun 2021 NNLO+NNLL PRL 110 (2013) 252004 $m_{top} = 172.5 \text{ GeV}, \alpha_{(M_{)}} = 0.118\pm0.001$ total stat scale uncertainty scale \oplus PDF $\oplus \alpha_e$ uncertainty $\sigma_{r} \pm (\text{stat}) \pm (\text{syst}) \pm (\text{lumi})$ Dilepton eu $803 \pm 2 \pm 25 \pm 20 \text{ pb}$ EPJC 79 (2019) 368, L = 35.9 fb⁻¹, 25 ns First 13TeV Dilepton $\tau + e/\mu$ $781 \pm 7 \pm 62 \pm 20 \ pb$ JHEP 02 (2020) 191 L_ = 35.9 fb⁻¹, 25 ns τ result All-jets 834 ± 25 ± 118 ± 23 pb CMS-PAS TOP-16-013, L_, = 2.53 fb⁻¹, 25 ns **NEW result!** L+iets 791 ± 1 ± 21 ± 14 pb H CMS-PAS TOP-20-001, L_, = 137 fb⁻¹, 25 ns * Unc.<3.2% NNPDF3.0 JHEP 04 (2015) 040 MMHT14 EPJC 75 (2015) 5 * Preliminary CT14 PRD 93 (2016) 033006 ABM12 PRD 89 (2015) 054028 $\alpha_{s}(m_{p}) = 0.113$ 200 400 600 800 1200 1000 1400 σ,, [pb]

- Inclusive measurements are in good agreement with theory
- Exp. uncertainty comparable to theoretical uncertainty July 2021 Javier Fdez.

Need to look at differential measurements!!

8

5.02TeV analysis

- Event selection:
 - Exactly two central, isolated and oppositely charged leptons
 - At least 2 jets (with or without btag)
 - Corresponding sameflavour lepton samples to estimate background
- Counting experiment:
 - **Reduced statistical** uncertainty after combination with I+jets (2015) analysis (27pb⁻¹)

Dilepton with taus

- <u>First measurement at</u> 13TeV including τ's
 - Improving relative precision of 7 and 8 TeV results
- e/μ and at least 3 jets, of which at least 1 is b-tagged and one identified as hadronic τ
- Background: constrained in a fit to the distribution of m_T(lepton,p_T^{miss}) in two event categories (e & μ)

Boosted differential cross sections UNIVERSIDAD DE OVIEDO Hadronic & e/ μ + jets \sqrt{s} = 13 TeV, 35.9fb⁻¹ (At least 1) Top reconstructed as a Phys. Rev. D 103 (2021) 052008 large-radius jet with transverse momentum in excess of 400 GeV CMS 35.9 fb⁻¹ (13 TeV) (Nop/dd) ¹⁰⁻² 10⁻³ 10⁻⁴

cross sections are significantly lower than the predictions from theory, while the normalized differential measurements are well described

2000

1500

Particle level

Data Total unc. Powheg+Pythia8

aMC@NLO+Pythia8

Powheg+Herwig++

All-jet channel

Other top: isolated e or μ + MET

 10^{-5}

 10^{-6}

-2

1000

(MC/data)-1

Differential cross sections

137 fb⁻¹ (13 TeV)

POWHEG P8 (CP5)

POWHEG H7 (CH3)

Data

Stat

Sys ⊕ stat

MG P8 (CP5)

MATRIX

UNIVERSIDAD DE OVIEDO e/μ + jets \sqrt{s} = 13 TeV. <u>TOP-20-001</u> Exactly 1 central, isolated e or μ • Differential and double-differential • 137 fb⁻¹ (13 TeV) cross sections in full kinematic range Events / 50 GeV CMS Data e/µ+jets Ŧ 10⁷ 2t Preliminary parton level 10⁶ 1t11 BHRL 10⁵ BHBL tt nonsignal [GeV⁻¹] CMS e/u+jets 10^{4} Sinale t Preliminary parton level Multijet, DY/W+iets 10⁻² 10^{3} Uncertainty dp_(1 10² 10 G_{norm} 10^{-4} 10^{-5} Data Pred. 1.2 10⁻⁶ 0.8 0.6 1600 1800 2000 p_{_}(t_b) [GeV] 1200 200 800 1000 1400 1600 0 10^{-7} 1.4 <u>Theory</u> Data

4 event categories based of number of tight (loose) b-tags and resolved or boosted top-quark candidates:

- 2t: 2 resolved top-candidates with 2 tightly b-tagged jets
- 1t1l: 2 resolved top-candidates with 1 tight and 1 loose b-tag ٠
- **BHRL**: boosted hadronic top ($p_T > 400$ GeV) but resolved • leptonic top, 1 tight b-tag
- BHBL: both top-candidates boosted, 1 loose b-tag on • leptonic side

Javier Fdez.

1.2

0.8

0.6

400

Absolute lower, shapes OK

200

600

800

1100 1600

p_(t) [GeV]

2D Differential cross sections

- For the first time the cross section of the full spectra are obtained using a combination of <u>resolved</u> and <u>boosted</u> tt topologies.
- Kinematic quantities on parton-level for individual top-quarks:
 - $p_{T}(t_{h}), p_{T}(t_{l}), |y(t_{h})|$
 - and top-pairs:
 - $|y(t\bar{t})|), \, m(t\bar{t}), \, p_T(t\bar{t})$
- The combination of multiple reconstruction categories allows for constraints of systematic uncertainties → significantly improved precision with respect to previous measurements
- Uncertainties in the jet energy scale, luminosity, and tt modeling are the dominant sources.

Summary

Top quark pair production measured with high precision at CMS:

- Inclusive results at 5, 7, 8 and 13TeV in good agreement with predictions, → (multi)differential studies
- Run2 at 13TeV allows to explore the full phase space of top production in both boosted and resolved topologies:
 - Most differential distributions compatible with the SM predictions of POWHEG +PYTHIA/HERWIG, and mg5_aMC@NLO +PYTHIA
 - A softer top quark p_T spectrum is observed compared to most of the NLO predictions, specially at high p_T and |y|
 - Parton-level cross sections compared to the NNLO QCD calculations obtained with MATRIX (reduced theoretical uncertainty)

BACKUP

Is top quark special?

CMS

- top quark is the most massive known particle
 - significant contribution of top loops
- the top Yukawa coupling is close to unity
 - coincidence or special dynamics?
- it decays before it can hadronize
 - no bound states with top can be formed
 - its decay products (W, b) largely preserve the top quark spin polarization
- top properties provide critical tests for the SM predictions
 - very sensitive to BSM effects

full hadronic
semileptonic

dileptonic

BR(t→Wb) = 0.957

LHC: the perfect machine?

UNIVERSIDAD DE OVIEDO

CMS Integrated Luminosity Delivered, pp, $\sqrt{s} = 13$ TeV

The detailed picture

- Inclusive measurements are in good agreement with theory
- Exp. uncertainty comparable to theoretical uncertainty

Need to look at differential measurements!!

July 2021