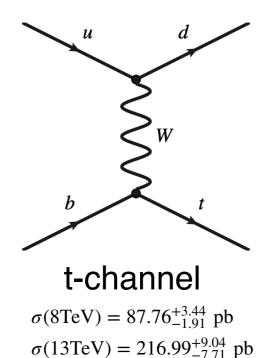
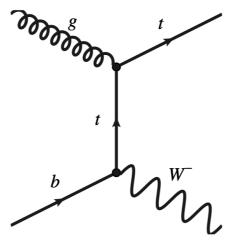


Measurements of single top quark production cross sections at ATLAS

Rui Zhang
on behalf of the ATLAS collaboration
University of Wisconsin-Madison, Wisconsin
EPS-HEP Conference 2021
July 26-30, 2021

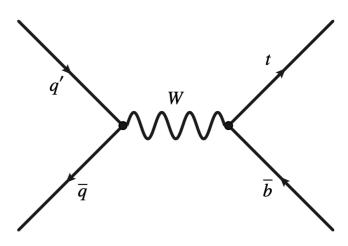
Introduction


- LHC is a top-quark factory
 - ~830 pb top quark pair production
 - 100+ Million tt events in Run 2
 - ~10—200 pb single top production



Single-top production

- Weak interaction, unlike tt̄
- Probe Wtb vertex for new physics.
- Important background in direct searches for particles beyond the SM

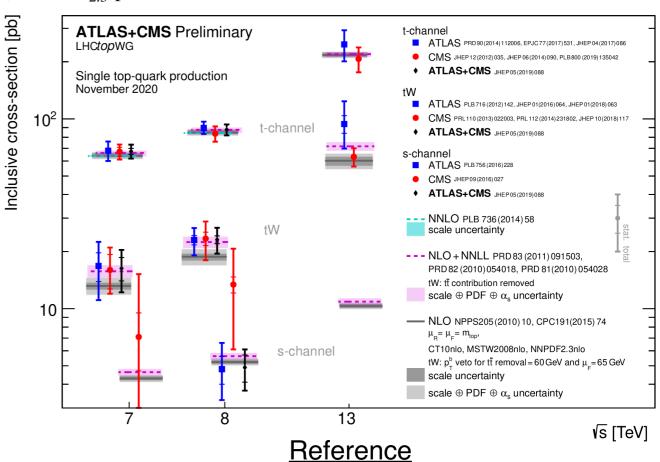

Single top production

tW-channel

$$\sigma(8\text{TeV}) = 24.6^{+1.1}_{-0.8}\text{pb}$$

 $\sigma(13\text{TeV}) = 79.5^{+2.8}_{-2.3}\text{ pb}$

s-channel


 $\sigma(8\text{TeV}) = 5.61 \pm 0.22 \text{ pb}$ $\sigma(13\text{TeV}) = 10.32^{+0.40}_{-0.36} \text{ pb}$

Cross sections

- t-channel > tW-channel > s-channel
- tW final-state can test modelling of off-shell tops / interference with $t\bar{t}$

Today we will be looking at:

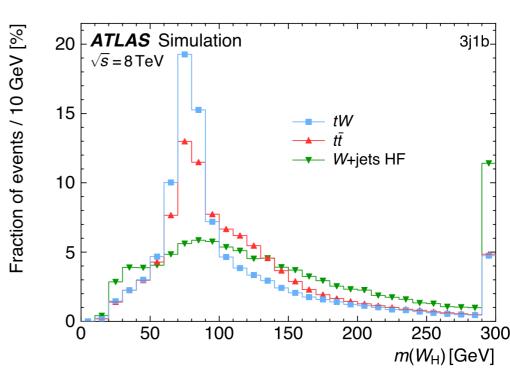
- tW inclusive cross section (l+jets)
- Top polarisation in single-top production (t-channel)

tW inclusive cross section

Inspire, arXiv:2007.01554, accepted by EPJC

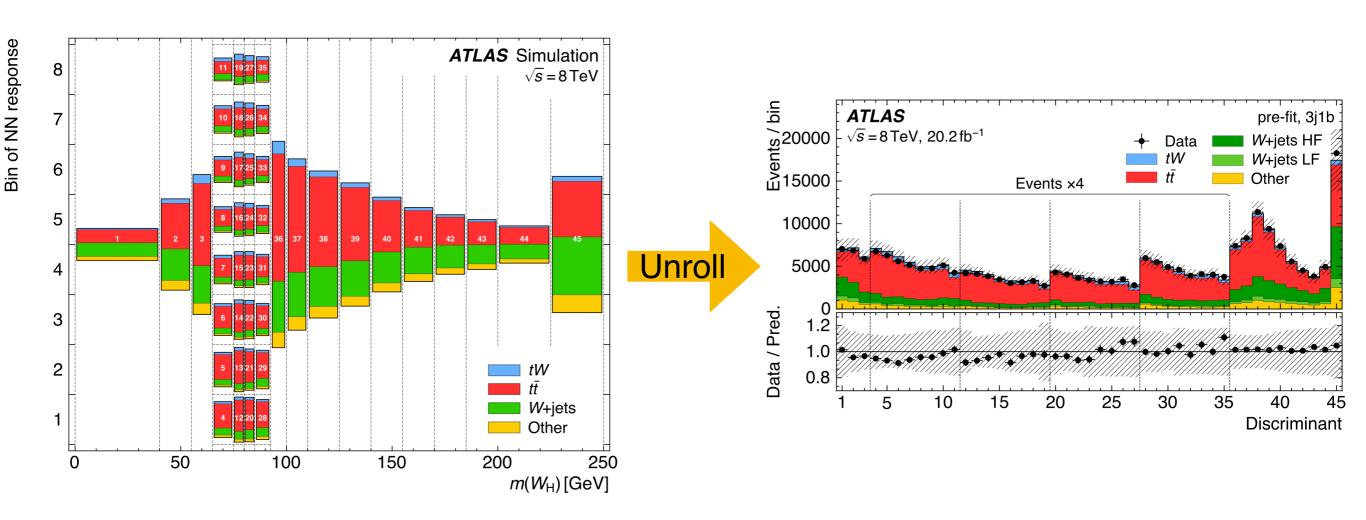
tW in I+jets

- Most measurements of tW to date use dilepton channel
- Present first evidence for tW production in single lepton (l+jets) final states at 8 TeV
 - 1 electron or muon, 3 jets with 1 b-tag (3j1b)
 - Missing transverse energy E^T_{miss} > 30 GeV
 - The transverse mass of the leptonically decaying $W m_T(W) > 50 \text{ GeV}$
- Challenging: S/B ~ 0.05
- Major backgrounds
 - tt: 58%
 - W+jets: 28%
- Region with an additional b-jet (4j2b) serves as a tt validation region


Process	Signal region (3j1b)		
$tW (\sigma_{tW}^{\text{th.}} = 22.4 \text{ pb})$	6300	±	600
$t\bar{t}$	77000	±	6000
t, t-channel	4180	±	290
t, s-channel	307	±	19
W+ jets, HF	31000	± 2	14000
W+jets, LF	6000	±	3000
Z + jets	3900	±	1700
WW/WZ/ZZ + jets	650	±	280
Fake leptons	4300	±	1900
Total background	128000	±	18000
Total signal + background	134000	±	18000
Observed	134633		

Signal and background separation

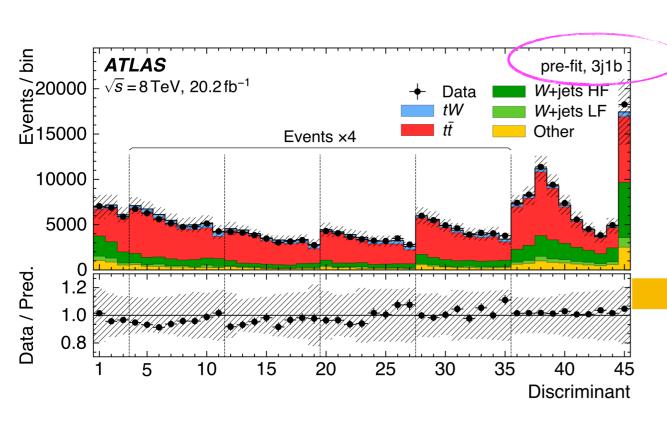
- Neural network is used to combine differences in multiple kinematic variables to a stronger discriminant
 - Variable list is carefully selected to avoid an increase of unexpected uncertainty
 - Four variables are selected and trained on signal against tt:


$$\rho_{\mathrm{T}}(W_{H}, W_{L}, j_{\mathrm{B}}) = \frac{p_{\mathrm{T}}(W_{\mathrm{H}}W_{\mathrm{L}}j_{\mathrm{B}})}{p_{\mathrm{T}}(W_{\mathrm{H}}) + p_{\mathrm{T}}(W_{\mathrm{L}}) + p_{\mathrm{T}}(j_{\mathrm{B}})} \qquad m(W_{\mathrm{L}}W_{\mathrm{H}}j_{\mathrm{B}}) \qquad |\Delta\eta(\ell, j_{L1})| \qquad |\eta(\ell)|$$

- Hadronically decaying W mass, $m(W_H)$, is strongly affected by uncertainties from reconstructed jet energy, thus is not used in NN
- Strong separation power provided by m(W_H)
 - For tW and $t\bar{t}$, peak at m(W) when two untagged jets are correctly assigned to W_H
 - Lower peak for tt due to higher jet multiplicity
 - W+jets does not peak since W must decay leptonically
- How to combine m(W_H) with NN?

The two-dimensional discriminant

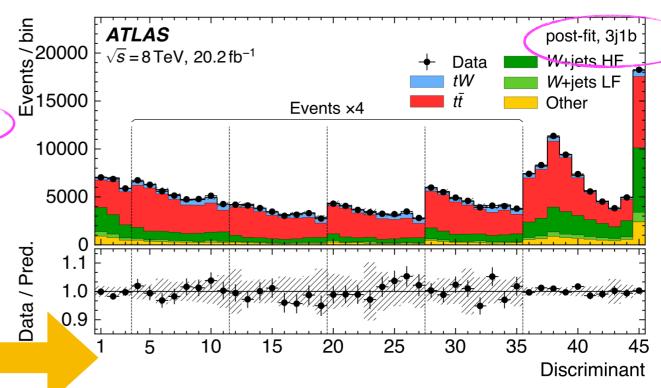
- NN is trained in 65 GeV < m(W_H) < 92.5 GeV
 - Focusing on well-reconstructed hadronic W events, primarily tt
 - Outside of this range, NN response is ignored

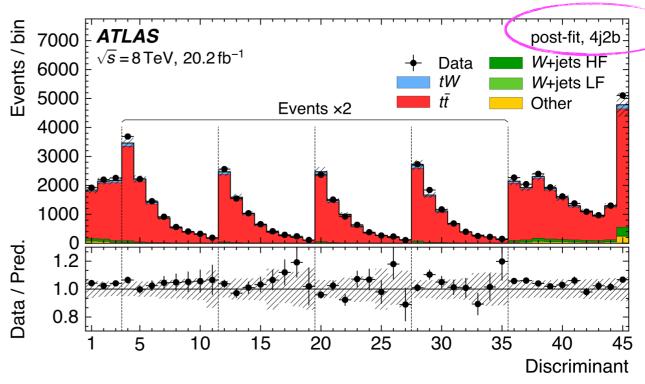


Systematic uncertainties

- Grouped into experimental and theoretical uncertainties
 - Dominated by Jet energy scale, tt radiation and MC statistics

Source	Uncertainty [%]
Jet energy scale	10
b-tagging	8
Jet energy resolution	7
$E_{\rm T}^{\rm miss}$ reconstruction	7
Lepton reconstruction	4
Luminosity	3
Jet vertex fraction	3
$t\bar{t}$ radiation	10
tW radiation	9
$tW-t\bar{t}$ interference	7
$t\bar{t}$ cross-section normalisation	6
Other background cross-section normalisations	5
tW and $t\bar{t}$ parton shower	4
tW and $t\bar{t}$ NLO matching	3
PDF	1
Model statistics	11
Data statistics	4
Total	27


Results



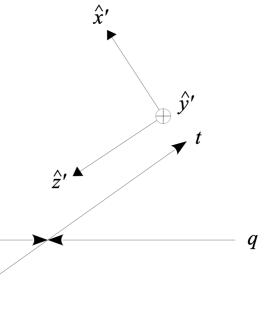
$$\sigma_{tW}^{\text{meas.}} = 26 \pm 7 \,\text{pb}$$

$$\sigma_{tW}^{\text{th.}} = 24.6^{+0.6+0.9}_{-0.5-0.6} \text{pb}$$
 JHEP 278 (2021)

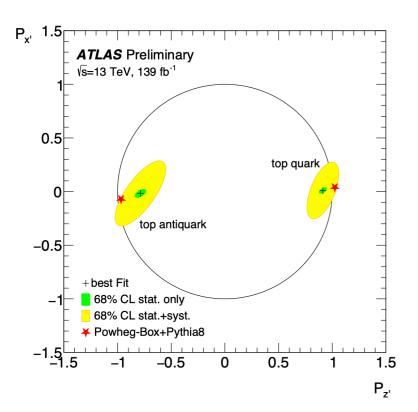
Significance: 4.5σ (3.9 σ expected)

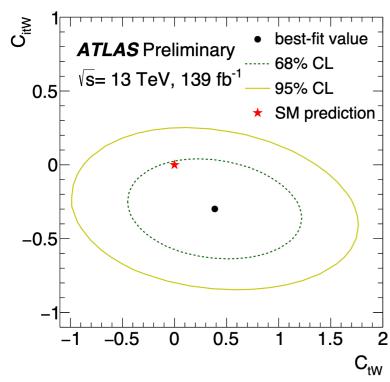
Top polarisation in single-top production (t-channel)

ATLAS-CONF-2021-027


More detailed talk 29/07/2021, 10:05 by Carlos Escobar

Top quark polarisation


- Unique chance to the polarisation measurement in single top
 - Weakly produced single tops are polarised
 - Top quarks in tt production are unpolarised (QCD conserves parity)
- First measurement of the full polarisation vector
 - In the t-channel at LO, top quark spin is aligned along the direction of the down-type quarks.
 - Measured also in two orthogonal axes, hence providing
 a complete description of the top quark polarisation b
 - Measured for both top quark and top anti-quark


Unfolded to particle level

- Differential cross sections are extracted for angular variables $\cos \theta_{\ell x'}$, $\cos \theta_{\ell y'}$, $\cos \theta_{\ell z'}$
- EFT \mathcal{O}_{tW} : only tree-level dimension-6 operator sensitive to polarisation
 - $\cos\theta_{\ell x'}$ sensitive to $\text{Re}(C_{tW})$
 - $\cos \theta_{\ell y'}$ sensitive to $\text{Im}(C_{tW})$, hint of CP violation in the tWb vertex if non-zero
 - $\cos\theta_{\ell z'}$ sensitive to many additional operators, thus ignore in the analysis

Results

Polarisation measurement

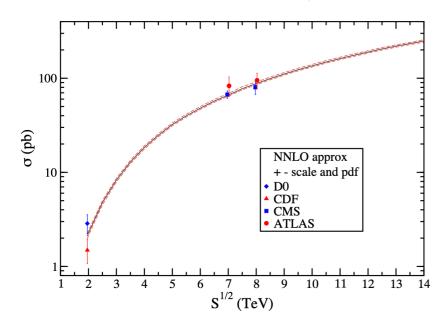
Parameter	Extracted value	(stat.)
t-channel norm.	$+1.045 \pm 0.022$	(± 0.006)
W+jets norm.	$+1.148 \pm 0.027$	(± 0.005)
$t\bar{t}$ norm.	$+1.005 \pm 0.016$	(± 0.004)
$P_{x'}^t$	$+0.01 \pm 0.18$	(± 0.02)
$P_{x'}^{ar{t}}$	-0.02 ± 0.20	(± 0.03)
$P_{y'}^t$	-0.029 ± 0.027	(± 0.011)
$P^{ar{t}}_{\ { m y}'}$	-0.007 ± 0.051	(± 0.017)
$P_{z'}^t$	$+0.91 \pm 0.10$	(± 0.02)
$P_{z'}^{ar{t}}$	-0.79 ± 0.16	(± 0.03)

No deviation from the SM

Refer to a more detailed talk on 29/07/2021, 10:05 given by Carlos Escobar

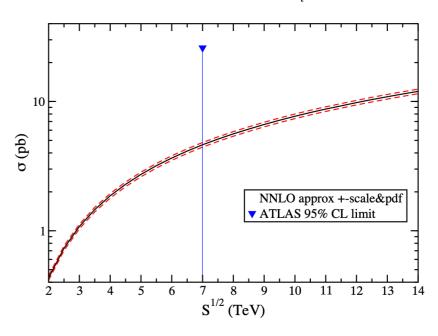
Limits on Wilson coefficients

	C _{tW}		C_{itW}	
	68% CL	95% CL	68% CL	95% CL
All terms	[-0.2, 0.9]	[-0.7, 1.5]	[-0.5, -0.1]	[-0.7, 0.2]
Order $1/\Lambda^4$		[-0.7, 1.5]	[-0.5, -0.1]	[-0.7, 0.2]
Order $1/\Lambda^2$	[-0.2, 1.0]	[-0.7, 1.7]	[-0.5, -0.1]	[-0.8, 0.2]

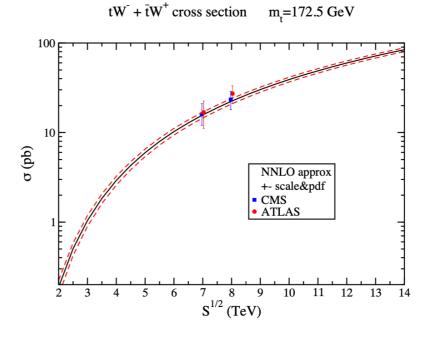

Summary

- Overviewed recent single top publications at ALTAS
- First measurements on the tW lepton+jets final state
 - Analysis exploits multivariate techniques to achieve a relatively clean signal
 - No deviations from the SM are seen
- First measurement of the full polarisation vector and for top quarks and antiquarks separately
 - Most stringent limit is set for Wilson coefficients for tWb vertex
 - No deviations from the SM are seen
- More info
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults

Thank you for listening!


$$\Gamma_{S\,t-11}^{(1)} = C_F \left[\ln \left(\frac{-t}{s} \right) + \ln \left(\frac{m_t^2 - t}{m_t \sqrt{s}} \right) - \frac{1}{2} \right]$$

t-channel total cross section m_t=172.5 GeV



$$\Gamma_{S\,s-11}^{(1)} = C_F \left[\ln \left(\frac{s - m_t^2}{m_t \sqrt{s}} \right) - \frac{1}{2} \right]$$

s-channel total cross section $m_f = 172.5 \text{ GeV}$

$$\Gamma_{S tW^{-}}^{(1)} = C_F \left[\ln \left(\frac{m_t^2 - t}{m_t \sqrt{s}} \right) - \frac{1}{2} \right] + \frac{C_A}{2} \ln \left(\frac{m_t^2 - u}{m_t^2 - t} \right)$$

Reference

Systematic tables from other analysis

ATLAS 13TeV 3.2 ifb dilepton tW

<u> </u>	
Source	$\Delta \sigma_{Wt}/\sigma_{Wt} [\%]$
Jet energy scale	21
Jet energy resolution	8.6
$E_{\mathrm{T}}^{\mathrm{miss}}$ soft terms	5.3
b-tagging	4.3
Luminosity	2.3
Lepton efficiency, energy scale and resolution	1.3
NLO matrix element generator	18
Parton shower and hadronisation	7.1
Initial-/final-state radiation	6.4
Diagram removal/subtraction	5.3
Parton distribution function	2.7
Non- $t\bar{t}$ background normalisation	3.7
Total systematic uncertainty	30
Data statistics	10
Total uncertainty	31

ATLAS 8TeV 20.3 ifb dilepton tW

Uncertainty	Impact on $\hat{\mu}$ [%]
Statistical	±5.8
Luminosity	±4.7
Theory modelling	
ISR/FSR	+8.2 -9.4
Hadronisation	±1.7
NLO matching method	±2.5
PDF	±0.6
DR/DS	+2.2 -4.8
Detector	
Jet	+9.0 -9.9
Lepton	±3.0
$E_{ m T}^{ m miss}$	±5.5
b-tag	±1.0
Background norm.	+2.9 -2.6
Total	+16 -17

MC simulator

- tW, tt: Baseline Powheg-box + Pythia 6
 - Radiation: higher (radHi) and lower (radLo) radiation relative to the nominal set, together with varied renormalisation and factorisation scales
 - PS: Pythia with Herwig
 - NLO: MC@NLO and Powheg-Box